Zn:BiVO₄/Mo:BiVO₄ Homojunction as Efficient Photoanode for Photoelectrochemical Water Splitting

Jae Myeong Lee,^{a ‡} Ji Hyun Baek,^{a, b ‡} Thomas Mark Gill,^b Xinjian Shi,^b SangMyeong Lee,^a In Sun Cho,^c Hyun Suk Jung,^a* and Xiaolin Zheng^b*

a. School of Advanced Materials Science & Engineering Sungkyunkwan University, Suwon 16419, Republic of Korea. *E-mail: hsjung1@skku.edu
b. Department of Mechanical Engineering Stanford University, Stanford California 94305, United States. *E-mail: xlzheng@stanford.edu
c. Department of Materials Science & Engineering and Energy Systems Research Ajou University, Suwon 16499, Republic of Korea.
[‡] These authors contributed equally to this work.

Fig. S1. SEM images of Mo:BVO, Zn:BVO and undoped BVO photoanodes. All photoanodes have similar morphologies and thickness of 300 nm (scale bar = 400 nm).

Fig. S2. Raman spectra of the (a) symmetric stretching mode and (b) symmetric and antisymmetric bending modes of Mo:BVO, Zn:BVO and undoped BVO.

•

Fig. S3. Mott-schottky plots of Mo:BVO, Zn:BVO and undoped BVO photoanodes. All photoanodes indicate n-type semiconductor characteristics. The charge carrier concentrations of each photoanode were changed by doping and calculated using the following equation:¹

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon_r A^2 e N_d} \left(E - E_{fb} - \frac{kT}{e} \right) \tag{1}$$

, where C is capacitance (F⁻¹cm²), ε_0 is permittivity (8.85 x 10⁻¹⁴ Fcm⁻¹), ε_r is relative permittivity (68),² A is area (cm²), *e* is elementary charge (1.602 x 10⁻¹⁹ C), N_d is donor concentration (cm⁻³), E is applied potential (V vs. RHE), E_{fb} is flat band potential (V vs. RHE), k is Boltzmann constant (8.617 eV/K) and T is temperature (K).

Fig. S4. I-V curves of undoped BVO and Zn:BVO/Mo:BVO homojunction photoanodes measured in air under ambient conditions. (a) The I-V characteristic of undoped BVO shows ohmic behavior and (b) that of Zn:BVO/Mo:BVO shows rectification behavior, suggesting the formation of a n-n+ junction.

Fig. S5. (a) Thickness optimization process for Zn:BVO/Mo:BVO homojunction as we vary the total thickness and the component thickness. The thickness is quantified as numbers of spin coating layers. As a result, the junction with 9 layers of Zn:BVO and 5 layers of Mo:BVO (total 14 layers) has the best photocurrent density among all the conditions tested from total 6 to 16 layers. Dopant concentration optimization process for (b) Zn:BVO and (c) Mo:BVO, respectively. 1 % of Zn and 3 % of Mo were attained as the best condition in PEC performance at 1.23 V vs RHE.

Fig. S6. Optical properties (transmittance, reflectance, and light absorption efficiencies) of 14 layers of Zn: BVO/Mo: BVO homojunction photoanode for optimization process. 9 layers of Zn:BVO and 5 layers of Mo:BVO (Zn:BVO/Mo:BVO = 9:5) has slightly better light absorption efficiency.

Fig. S7. J-V curves of the (Zn, Mo) co-doped BVO and Zn:BVO/Mo:BVO photoanodes under 1 sun illumination. The PEC performance of the Zn:BVO/Mo:BVO homojunction photoanode was much better than that of the (Zn, Mo) co-doped BVO photoanode.

Fig. S8. Secondary ion mass spectrometry of (a) (Zn, Mo) co-doepd BVO, (b) magnified plot from (a), (c) Zn:BVO/Mo:BVO homojunction photoanode and (d) magnified plot from (c).

Fig. S9. J-V curves of (a) Zn:BVO/Mo:BVO homojunction, (b) Mo:BVO, (c) Zn:BVO and (d) undoped BVO photoanodes with H_2O_2 . Photocurrent density measured in the electrolyte with H_2O_2 can be assumed as all holes generated are used for water oxidation. The charge transfer and bulk transport efficiencies of four photoanodes were evaluated using the H_2O_2 hole scavenger method.³ The relationships between current density, light absorption, transfer efficiency and transport efficiency are as follows:

$$J_{Ph} = J_{abs} \times \eta_{transfer} \times \eta_{transport}$$
(2)

$$\eta_{tranfer} = \frac{J_{H_2O_2}}{J_{H_2O_2}} \tag{3}$$
$$\eta_{tranport} = \frac{J_{H_2O_2}}{J_{abs}} \tag{4}$$

, where J_{Ph} is the measured photocurrent density, J_{abs} is current density calculated from light absorption, $\eta_{tranport}$ is the charge transport efficiency, and $\eta_{tranfer}$ is charge transfer efficiency at the interface between the surface and electrolyte.

Fig. S10. (a) Transient photocurrent responses of Mo:BVO, Zn:BVO and undoped BVO photoanodes (b) Normalized plots of the current–time dependence of each photoanode at 1.23 V vs. RHE under illumination. J_{in} and J_{st} are the time-dependent, initial and steady-state photocurrent, respectively. Typically, the initial photocurrent, J_{in} , is attributed to bulk electronhole separation under immediate illumination, which is followed by decay to the steady state photocurrent, J_{st} , due to surface charge recombination.⁴ In particular, Zn:BVO took approximately 5 sec when ln D=-1 compared to Mo doped and undoped BVO (0.2 sec and 0.4 sec), suggesting dramatically improved carrier lifetimes with Zn doping.

Fig. S11. Two stability tests of Ni:FeOOH/Zn:BVO/Mo:BVO, Zn:BVO/Mo:BVO, Mo:BVO, Zn:BVO, and undoped BVO photoanodes. (a) with initial current density of 1 mA/cm² at 0.52 V, 0.85 V, 1.12 V, 1.34 V and 1.62 V vs. RHE, respectively. (b) with same applied bias of 1.23 V vs. RHE. Conditions: the phosphate buffer solution (pH \sim 7) for 1 hour under illumination.

	R1	R2	R3
Zn:BVO/Mo:BVO	64.80	123.4	1062
Mo:BVO	62.58	361.7	2742
Zn:BVO	64.99	1376	2389
Undoped BVO	61.76	1720	3601

Table S1. Specific EIS values at each region for undoped BVO, Zn:BVO, Mo:BVO and Zn:BVO/Mo:BVO.

Table S2. Comparison of our Zn:BVO/Mo:BVO homojunction photoanode with different homojunction and heterojunction photoanodes.

	Current Density (mA/cm ²)	Thickness (nm)	Electrolyte	Process	Reference
Zn:BVO/Mo:BVO Ni:FeOOH/Zn:BVO/Mo:BVO	2.5 at 1.23 V vs RHE 2.7 at 1.23 V vs RHE	300	0.5 M Kpi (pH=7)	Spin coating	This work
Co:BVO/Mo:BVO	2.09 at 1.23 V RHE	200	0.1 M Kpi (pH=7)	Spin coating	Ref 5.
Zn:BVO/BVO	0.63 at 1.23 V vs Ag/AgCl	150	0.5 M Na2SO4		Ref 6.
BVO/Mn:BVO	2.2 at 1.24 V vs RHE	-	Na2SO4 (pH=7)	Spray Pyrolysis	Ref 7.
BVO/TiO2	0.8 at 1.23 V vs RHE 2.14 at 1.7 V vs RHE	600	0.5 M Na2SO4 + Kpi (pH=7)	Spin coating (BVO) Hydrothermal and CBD (TiO2)	Ref 8.
BVO/ZnO	1.75 at 1 V vs RHE	300 (BVO) 900 (ZnO)	0.2 M Na2SO4 (pH=6.5)	Spray pyrolysis (BVO) Hydrolysis condensation synthesis (ZnO)	Ref 9.
BVO/WO3	1.74 at 0.7 V vs Ag/AgCl	3000	0.5 M Na2SO4	Drop casting	Ref 10.
BVO/WO3	2.0 at 1.23 V vs RHE	400	0.1 M Kpi (pH=7)	Drop casting	Ref 11.
BVO/SnO2	0.95 at 1.23 V vs RHE	245	0.5 M Na2SO4 + 0.1 M Kpi (pH~7)	Drop casting	Ref 12.

References

- 1. Z. Chen, H. N. Dinh and E. Miller, *Photoelectrochemical water splitting*, Springer, 2013.
- 2. D. Zhou, L. X. Pang, J. Guo, Z. M. Qi, T. Shao, Q. P. Wang, H. D. Xie, X. Yao and C. A. Randall, *Inorg. Chem.*, 2014, **53**, 1048-1055.
- 3. X. J. Shi, S. Siahrostami, G. L. Li, Y. R. Zhang, P. Chakthranont, F. Studt, T. F. Jaramillo, X. L. Zheng and J. K. Norskov, *Nat. Commun.*, 2017, **8**.
- 4. D. Tafalla, P. Salvador and R. Benito, *J. Electrochem. Soc.*, 1990, **137**, 1810-1815.
- 5. B. Zhang, H. Zhang, Z. Wang, X. Zhang, X. Qin, Y. Dai, Y. Liu, P. Wang, Y. Li and B. Huang, Appl. Catal. B-Environ., 2017, **211**, 258-265.
- 6. J. Z. Su, C. Liu, D. Y. Liu, M. T. Li and J. L. Zhou, Chemcatchem, 2016, **8**, 3279-3286.
- 7. A. Srivastav, P. Kumar, A. Verma, Y. R. Smith, V. R. Satsangi, R. Shrivastau, U. V. Waghmare and S. Dass, Int. J. Hydrogen Energy, 2018, **43**, 15815-15822.
- 8. B. Y. Cheng, J. S. Yang, H. W. Cho and J. J. Wu, ACS Appl Mater Interfaces, 2016, **8**, 20032-20039.
- 9. S. J. A. Moniz, J. Zhu and J. Tang, Adv. Energy Mater., 2014, 4, 1301590.
- 10. S. J. Hong, S. Lee, J. S. Jang and J. S. Lee, Energy Environ. Sci., 2011, 4, 1781.
- 11. J. H. Kim, G. Magesh, H. J. Kang, M. Banu, J. H. Kim, J. Lee and J. S. Lee, Nano Energy, 2015, **15**, 153-163.
- 12. S. Byun, B. Kim, S. Jeon and B. Shin, J Mater Chem A, 2017, **5**, 6905-6913.