Electronic Supplementary Information

Synergistic Effects of Platinum-Cerium Carbonate Hydroxides-Reduced

Graphene Oxide on Enhanced Durability for Methanol Electro-Oxidation

Guanjun Chen,^a Zhengfei Dai,^{a,*} Lan Sun,^a Long Zhang,^a Shuai Liu,^b Hongwei Bao,^a Jinglei Bi,^a Shengchun Yang,^a and Fei Ma^{a,*}

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an710049, Shaanxi, People's Republic of China

^b College of Sciences, Xi'an Shiyou University, Xi'an 710065, Shaanxi, People's Republic of China

Fig. S1 Guanjun Chen *et al.*

Fig. S1 (a-d) SEM images of rGO, Ce(CO₃)OH/rGO-1, Ce(CO₃)OH/rGO-2 and Ce(CO₃)OH/rGO-3; respectively. (e-h) TEM images of Pt/rGO, Pt-Ce(CO₃)OH/rGO-1, Pt-Ce(CO₃)OH/rGO-2 and Pt-Ce(CO₃)OH/rGO-3, respectively.

Fig. S2 TG results of Ce(CO₃)OH. During the TG process, Ce(CO₃)OH is decomposited as follow: Ce(CO₃)OH + O₂ \rightarrow CeO₂ + CO₂ + H₂O. The residue is CeO₂, which accounts for 77.7% of the total weight.

Fig. S3 Guanjun Chen et al.

Fig. S3 Raman spectra of Pt-Ce(CO₃)OH/rGO-2, in which two peaks at 1580 cm⁻¹ and 1350 cm⁻¹ belongs to the G-band and D-band of graphene sheets. The intensity ratio of D to G bands (I_D/I_G) is 1.26, characteristic of rGO feature.

Fig. S4 Guanjun Chen et al.

Fig. S4 TEM images and particle size distribution histograms of (a) $Ce(CO_3)OH/G$, (b) Pt-Ce(CO₃)OH/rGO.

Fig. S5 Cyclic voltammetric curves of (a) Pt/rGO, Pt/C, (b) Pt-Ce(CO₃)OH/rGO-1, Pt-Ce(CO₃)OH/rGO-2, Pt-Ce(CO₃)OH/rGO-3 in 1 M KOH electrolyte for the MOR at a sweep rate of 50 mV s⁻¹.

Fig. S6 Cyclic voltammetric curves of $Ce(CO_3)OH/rGO$ for the MOR at a sweep rate of 50 mV s⁻¹ in (a) 1 M KOH electrolyte, (b) 1 M Methanol and 1 M KOH electrolyte.

Fig. S7 Guanjun Chen et al.

Fig. S7 Electrochemical degradation results of Pt/C, Pt/rGO, Pt-Ce(CO₃)OH/rGO-1, Pt-Ce(CO₃)OH/rGO-2 and Pt-Ce(CO₃)OH/rGO-3 catalysts before and after 5000 potential cycles.

Fig. S8 CO stripping experiments of (a) Pt-Ce(CO₃)OH/rGO, (b) Pt/rGO, (c) Pt/C in 1 M KOH.

Fig. 89 Guanjun Chen *et al.*

Fig. S9 .SMART2 PEM/DM test system.

Fig. S10 Guanjun Chen et al.

Fig. S10 (a) Polarization curves and (b) power density of Pt-Ce(CO₃)OH/rGO-2 and commercial 20% Pt/C in DMFCs.

Specimen	Pt (wt%)	Ce (wt%)	Ce(CO ₃)OH (wt%)
Pt/C	26.91		
Pt/rGO	27.14		
Pt-Ce(CO ₃)OH/rGO-1	26.53	13.18	17.2
Pt-Ce(CO ₃)OH/rGO-2	26.87	28.12	36.7
Pt-Ce(CO ₃)OH/rGO-3	26.89	36.2	47.3

Table S1 ICP-MS analysis of the mass fraction of Pt and Ce in the specimen, then combine the TGA data to obtain the mass fraction of $Ce(CO_3)OH$.

anaaiman	Weight (%)					
specifien	С	0	Ce	Pt		
Pt-Ce(CO ₃)OH/rGO	37.37	8.83	8.62	45.18		
Ce(CO ₃)OH/rGO	51.32	19.99	28.69			
20wt% Pt/rGO	53.58	11.78		32.45		
20wt% Pt/C	72.04	5.81		22.16		

Table S2 XPS analysis of the surface compositions of Pt-Ce(CO₃)OH/rGO, Ce(CO₃)OH/rGO, Pt/rGO and Pt/C.

Spaaiman	Origin	Binding Energy (ev)	Peak Area (%)		
Specimen			Pt (0)	Pt (II)	Pt (IV)
Pt/Ce(CO ₃)OH/rGO	Pt 4f _{7/2}	71.35	35.97	7.19	6.48
	Pt 4f _{5/2}	74.6	35.97	9.71	4.68
	$Pt 4f_{7/2} + Pt 4f_{5/2}$		71.94	16.90	11.16
Pt/rGO	Pt 4f _{7/2}	71.6	30.58	10.7	9.79
	Pt 4f _{5/2}	74.9	28.13	13.46	7.34
	Pt $4f_{7/2}$ + Pt $4f_{5/2}$		58.71	24.16	17.13
	Pt 4f _{7/2}	71.85	31.35	13.17	5.96
Pt/C	Pt $4f_{5/2}$	75	23.19	17.24	9.09
	Pt $4f_{7/2}$ + Pt $4f_{5/2}$		54.54	30.41	15.05

Table S3 XPS results of Pt 4f.

Specimen	ECSA (m ² g ⁻¹)	One Set Potential (V)	Peak Potential (V)	Mass activity (mA mg ⁻¹)
Pt/Ce(CO ₃)OH/rGO-1	55.71	0.24	0.80	1277.5
Pt/Ce(CO ₃)OH/rGO-2	60.36	0.21	0.78	1477.5
Pt/Ce(CO ₃)OH/rGO-3	56.19	0.23	0.86	1284.5
Pt/rGO	49.28	0.24	0.76	1273.7
Pt/C	39.34	0.27	0.73	812.9

Table S4 The electrochemical parameters of Pt-Ce(CO3)OH/rGO-1, Pt-Ce(CO3)OH/rGO-2, Pt-Ce(CO3)OH/rGO-3, Pt/rGO and Pt/C catalysts.

Parameter	Pt/Ce(CO ₃)OH/rGO-2	Pt/rGO	Pt/C
Rm (ohm cm ²)	1.35	1.34	1.35
Ri (ohm cm ²)	1.85	2.30	4.42
Ci (F cm ⁻²)	0.04	0.03	0.03
Rct (ohm cm ²)	1.86	0.25	1.16
Cdl (F cm ⁻²)	0.014	0.008	0.003
Rc (ohm cm ²)	0.40	0.42	0.16
Lco (H cm ⁻²)	2.07×10 ⁻¹⁰	0.05	0.19

 Table S5 Equivalent-circuit parameters on modeling the DMFC anode using constant phase elements.

Electrocatalyst	Electrolyte	Mass activity (mA mg ⁻¹)	Specific activity (mA cm ⁻²)	Scan rate (mV s ⁻¹)	Durability	Reference
Pt-Ce(CO ₃)OH /rGO	1.0 M KOH + 1.0 M methanol	1477.5	2.45	50	66 % activity retention after 3600s;52 % activity retention after 14400s	This work
Pd-Ni-Pt Core- Sandwich-Shell	0.1 M KOH + 0.05M methanol		1.6	100	38 % activity retention after 1000s	ACS Nano 2014, 7, 7239.
Pt-Ni(OH) ₂ /rGO	1.0 M KOH + 1.0 M methanol	1276		20	30 % activity retention after 50000s	Nat. Commun. 2015, 6, 10035
Pd1Cu5	1.0 M KOH + 1.0 M methanol	1090		50	20 % activity retention after 2000s	J. Mater. Chem. A,2018, 6, 3906
$Cu_4Pt_2Pd_2$	1.0 M KOH + 1.0 M methanol		8.45	50	5 % activity retention after 10000s	<i>ACS Appl. Mater. Interfaces.</i> 2017, 9, 25995
Pt/karst-Ni	1.0 M KOH + 1.0 M methanol		13.5	20	25 % activity retention after 3600s	<i>Appl. Catal. B-Environ.</i> 2011, 104, 382
Pt-Au CSANCs	0.5 M KOH + 0.5 M methanol	946		50	30 % activity retention after 4000s	<i>J. Power Sources.</i> 2016 , 302, 140
Pt-Pd/PPVK	1 M KOH + 1.0 M methanol	680		50	28 % activity retention after 3600s	Fuel 2012, 102, 560
Fe ₃ O ₄ @CeO ₂ /Pt	0.5 M KOH + 1.0 M methanol	273		50	25 % activity retention after 3600s	J. Mater. Chem. A 2015, 3, 139
Au ₁ Pt ₃ bimetallic	0.5 M KOH + 0.5 M methanol		9	50	18 % activity retention after 1000s	<i>ACS Sustainable Chem. Eng.</i> 2014, 2, 533
CoPt ₃ mesoporous films	1.0 M NaOH + 1.0 M methanol		4.8	20	20 % activity retention after 7200s	J. Mater. Chem. A 2016, 4, 7805

Table S6 A summary of the activity and stability of MOR electrocatalysts in alkaline electrolyte available in literature.