Supporting Information

Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm² approaching 10% efficiency

Longbin Qiu, †^a Sisi He, †^a Yan Jiang,^a Dae-Yong Son,^a Luis K. Ono,^a Zonghao Liu,^a Taehoon Kim,^a Theodoros Bouloumis,^a Said Kazaoui,^b Yabing Qi^{*a}

[†] L. Qiu and S. He contributed equally to this work.

a. Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Kunigami-gun, Onna-son, Okinawa 904-0495, Japan.

*Corresponding author: Yabing Qi, E-mail: Yabing.Qi@OIST.jp

b. Research Center for Photovoltaics (RCPV), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan

Figure S1. Tauc-plot of the Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite film exhibiting an optical band-gap of 1.56 eV.

Figure S2. XPS mapping of the Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite layer, which shows the uniform distribution of Br and Cs elements.

Figure S3. XRD data of the Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite film by the CVD process and the solution coating process.

Figure S4. a) Absorbance and the corresponding **b)** Tauc-plots of the $Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1}$ perovskite films by the CVD process and the solution coating process.

Figure S5. XPS spectra of the Br 3d core level of the Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite film by the CVD process and the solution coating process.

Figure S6. Time-resolved photoluminescence data of the Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite film on glass and measured in air. The limitation of open-circuit voltage due to recombination is 1.04 V.^[S1]

Supporting Note 1.

To calculate the V_{OC} limitation due to the non-radiative recombination, we refer to the process described by W. Tress and the example applied by D. Neher et al.^[S1]

$$eV_{oc} = E_g + k_B T * \ln\left(\frac{n_e n_h}{N_c N_v}\right) \quad (1)$$

$$\frac{dn_e}{d_t} = G - R \rightarrow 0 \sim G - \frac{n_e}{\tau} \rightarrow n_e \sim G\tau \quad (2)$$

$$G \sim \frac{J_{sc}}{ed} \quad (3)$$

$$N_c = 2\left[\frac{2\pi m_e^* k_B T}{h^2}\right]^{3/2} \quad (4)$$

$$N_V = 2\left[\frac{2\pi m_h^* k_B T}{h^2}\right]^{3/2} \quad (5)$$

Here, E_g is the band gap of perovskite (1.56 eV); k_B is the Boltzmann constant; T is the temperature (*K*); $n_e(n_h)$ is the density of electrons (holes) in the conduction (valance) band; N_C (N_V) is the effective density of states in the conduction (valence) band ($3.12 \times 10^{24} / \text{m}^3$); m_e^* (m_h^*) is the effective mass for electrons (holes). *G* is the generation rate and *R* is the recombination rate. Assuming equal densities for electrons and holes and using $\tau = 30$ ns extracted from Figure S6, the achievable V_{OC} is 1.04 V.

Figure S7. Typical J-V curves with sputtered SnO₂ as electron transport layer for the HCVD grown perovskite Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} based devices.

Figure S8. Secondary electron cutoff (work function determination) and valance band spectra (shown in log scale) of the SnO₂ film before and after the vacuum annealing process.

Figure S9. XPS a) Sn 3d and b) O 1s core level spectra of the SnO₂ film before and after vacuum annealing. After vacuum annealing the O content decreased by 4% (with the Sn content normalized to 1).

Figure S10. Typical J-V curves with SnO₂ and vacuum annealed SnO₂ as electron transport layer for spin coated perovskite based devices.

Figure S11. Energy level diagram of perovskite solar cells with the vacuum deposited SnO₂/C₆₀ electron transport layer and the HCVD grown MAPbI₃ and Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} perovskite materials.

Figure S12. Solar module patterning for sub-cell interconnection with a geometric fill factor of 0.9.

Figure S13. Side view of the perovskite solar modules after encapsulation.

Figure S14. 10 cm \times 10 cm Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} solar module performance before and after encapsulation.

Figure S15. Solar cell efficiency decays as a function of cell/module designated area for both champion and average solar cell/module performance (decay rate 1.3% per decade).

Figure S16. Hysteresis of the HCVD fabricated Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1} solar module with an area of 10 cm × 10 cm.

Figure S17. 10 cm \times 10 cm HCVD fabricated MAPbI₃ solar module performance. a. J-V curves before and after encapsulation shows a similar PCE of approximately 6.4%. b. Steady-state power output at the bias voltage of 8.4 V shows the stabilized PCE of 5.9%.

Figure S18. 5 cm × 5 cm solar module performance before and after encapsulation.

	Cs 3d3/2 (eV)	Cs 3d5/2 (eV)	Pb 4f5/2 (eV)	Pb 4f7/2 (eV)
PbI ₂ /CsBr	738.1	724.2	142.8	137.9
$Cs_{0.1}FA_{0.9}PbI_{2.9}Br_{0.1}$	738.8	724.8	143.2	138.3

Table S1. Binding energy for the XPS core levels of Cs 3d and Pb 4f before and after HCVD.

Table S2. Photovoltaic parameters for the HCVD fabricated devices based on SnO2 andSnO2/C60 electron transport layer.ETLVoc (V)Jsc (mA/cm²)FEPCE (%)

ETL	Voc (V)	J _{SC} (mA/cm ²)	FF	PCE (%)
SnO ₂	0.81 ± 0.07	18.4 ± 0.5	0.54 ± 0.04	8.1 ± 1.1
SnO_2/C_{60}	0.90 ± 0.04	20.2 ± 0.3	0.67 ± 0.02	12.3 ± 0.6

SnO ₂ treatment	$V_{OC}(V)$	J_{SC} (mA/cm ²)	FF	PCE (%)
Without vacuum	1.03 ± 0.01	21.4 ± 0.2	0.74 ± 0.02	16.4 ± 0.5
annealing				
With vacuum	0.73 ± 0.04	18.8 ± 0.9	0.55 ± 0.02	7.6 ± 0.6
annealing				
Without vacuum	1.06 ± 0.01	20.2 ± 0.3	0.72 ± 0.04	15.5 ± 0.8
annealing				
With vacuum	0.96 ± 0.02	19.6 ± 0.2	0.62 ± 0.04	11.7 ± 0.9
annealing				
Without vacuum	1.02 ± 0.01	20.7 ± 0.6	0.68 ± 0.02	14.4 ± 0.7
annealing				
With vacuum	1.00 ± 0.02	20.6 ± 0.5	0.66 ± 0.03	13.6 ± 0.7
annealing				
	SnO2 treatmentWithout vacuumannealingWith vacuumannealingWithout vacuumannealingWith vacuumannealingWithout vacuumannealingWithout vacuumannealingWithout vacuumannealingWithout vacuumannealingWith vacuumannealingWith vacuumannealing	$\begin{array}{ll} SnO_2 \mbox{ treatment} & V_{OC} \mbox{ (V)} \\ \hline \mbox{Without vacuum} & 1.03 \pm 0.01 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 0.73 \pm 0.04 \\ \mbox{ annealing} \\ \hline \mbox{Without vacuum} & 1.06 \pm 0.01 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 0.96 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{Without vacuum} & 1.02 \pm 0.01 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.02 \pm 0.01 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{ annealing} \\ \hline \mbox{ With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{ With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline \mbox{ With vacuum} & 1.00 \pm 0.02 \\ \mbox{ annealing} \\ \hline Ann$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c cccccc} SnO_2 \mbox{ treatment} & V_{OC} \mbox{ (V)} & J_{SC} \mbox{ (mA/cm}^2) & FF \\ \hline \mbox{Without vacuum} & 1.03 \pm 0.01 & 21.4 \pm 0.2 & 0.74 \pm 0.02 \\ \mbox{ annealing} & & & & \\ \hline \mbox{With vacuum} & 0.73 \pm 0.04 & 18.8 \pm 0.9 & 0.55 \pm 0.02 \\ \mbox{ annealing} & & & & \\ \hline \mbox{Without vacuum} & 1.06 \pm 0.01 & 20.2 \pm 0.3 & 0.72 \pm 0.04 \\ \mbox{ annealing} & & & & \\ \hline \mbox{With vacuum} & 0.96 \pm 0.02 & 19.6 \pm 0.2 & 0.62 \pm 0.04 \\ \mbox{ annealing} & & & \\ \hline \mbox{Without vacuum} & 1.02 \pm 0.01 & 20.7 \pm 0.6 & 0.68 \pm 0.02 \\ \mbox{ annealing} & & & \\ \hline \mbox{Without vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline \mbox{With vacuum} & 1.00 \pm 0.02 & 20.6 \pm 0.5 & 0.66 \pm 0.03 \\ \mbox{ annealing} & & & \\ \hline anne$

Table S3. Photovoltaic parameters for the solution coated perovskite devices based on different SnO₂ with and without the vacuum annealing treatment.

	0		
$V_{OC}(V)$	J_{SC} (mA/cm ²)	FF	PCE (%)
12.92	1.17	0.53	8.06
12.60	1.10	0.56	7.74
13.04	1.22	0.58	9.17
12.54	1.22	0.55	8.40
12.34	1.21	0.52	7.83
12.44	1.19	0.56	8.37
12.49	1.19	0.55	8.20
13.55	1.16	0.59	9.34
13.45	1.14	0.58	8.82
12.60	1.13	0.52	7.36
12.8 ± 0.4	1.17 ± 0.04	0.55 ± 0.02	8.3 ± 0.6
	$\begin{array}{c} V_{OC} (V) \\ \hline 12.92 \\ 12.60 \\ 13.04 \\ 12.54 \\ 12.34 \\ 12.44 \\ 12.49 \\ 13.55 \\ 13.45 \\ 12.60 \\ 12.8 \pm 0.4 \end{array}$	$\begin{tabular}{ c c c c c c c } \hline U_{OC} (V) & J_{SC} (mA/cm^2) \\ \hline 12.92 & 1.17 \\ 12.60 & 1.10 \\ 13.04 & 1.22 \\ 12.54 & 1.22 \\ 12.54 & 1.22 \\ 12.34 & 1.21 \\ 12.44 & 1.19 \\ 12.49 & 1.19 \\ 13.55 & 1.16 \\ 13.45 & 1.14 \\ 12.60 & 1.13 \\ 12.8 \pm 0.4 & 1.17 \pm 0.04 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

Table S4. Photovoltaic parameters for the 10 cm \times 10 cm perovskite solar modules with a designated area of 91.8 cm² fabricated using the HCVD method.

[S1] (a) W. Tress, *Adv. Energy Mater.* 2017, *7*, 1602358; (b) M. Stolterfoht, C. M. Wolff, J. A. Márquez, S. Zhang, C. J. Hages, D. Rothhardt, S. Albrecht, P. L. Burn, P. Meredith, T. Unold, D. Neher, *Nat. Energy* 2018, *3*, 847.