

Supporting information for

Polysulfide-Driven Low Charge Overpotential for Aprotic Lithium-Oxygen Batteries

Yin Zhou^{a, b, c}, Zhiyang Lyu^b, Zhenjie Liu^d, Wenrui Dai^{b,c}, Rui Guo^b, Jinlin Yang^{b,c}, Xinhang Cui^c,
Yong Zhao^f, Ming Lin^g, Min Lai^a, Zhangquan Peng^d and Wei Chen^{b, c, e*}

¹School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China

²Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.

³National University of Singapore (Suzhou) Research Institute, Suzhou, 215123, China.

⁴State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China

⁵Department of Physics, National University of Singapore, 2 Science Drive 3, 117543, Singapore.

⁶Institute for Advanced Study and Department of Physics, Nanchang University, Nanchang, 330031, P.R. China

⁷Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore.

*Corresponding Author E-mail: phycw@nus.edu.sg (W Chen)

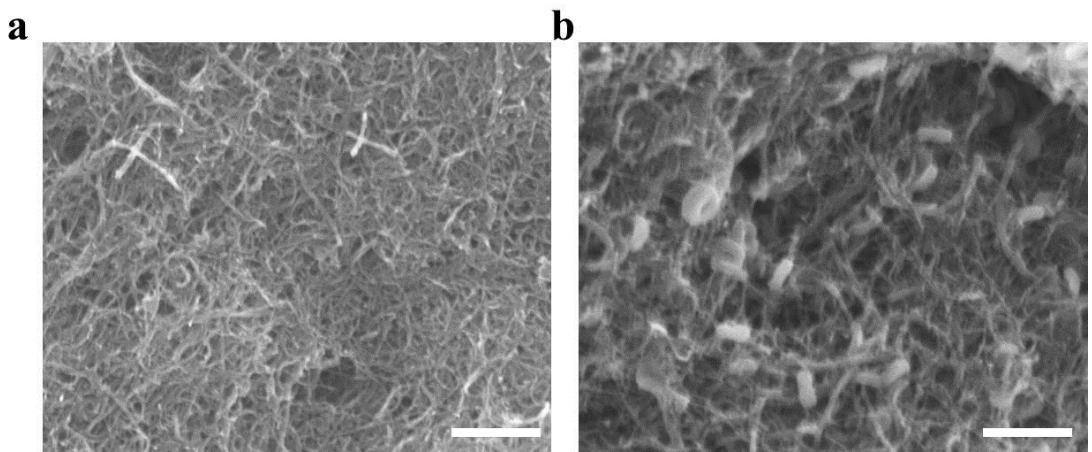


Figure S1. SEM images showing the morphology of CNT cathode (a) before charge and (b) after the 1st discharge. Scale bars, 200 nm (a), 500 nm (b).

Noted: The toroid-type products are observed after the 1st discharge process for CNT cathode.

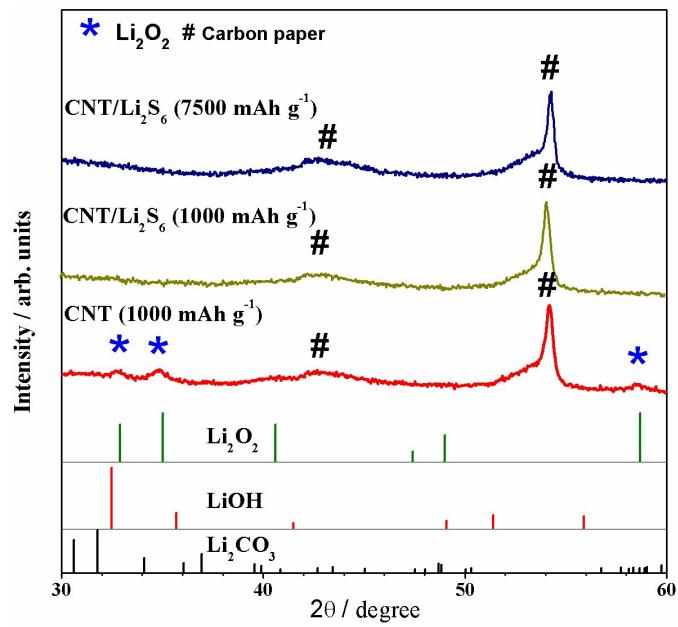


Figure S2. XRD patterns of CNT(1000 mAh g⁻¹) and CNT/Li₂S₆ (1000 mAh g⁻¹ and 7500 mAh g⁻¹) after the 1st discharge.

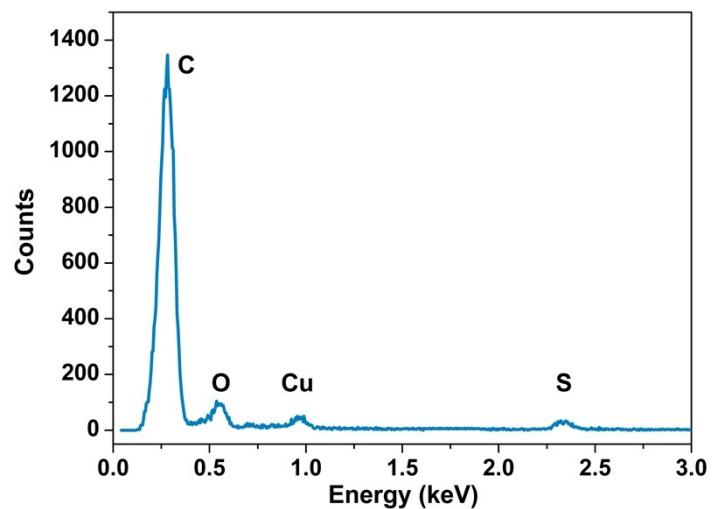


Figure S3. EDX result of the CNT/Li₂S₆ after the 1st discharge.

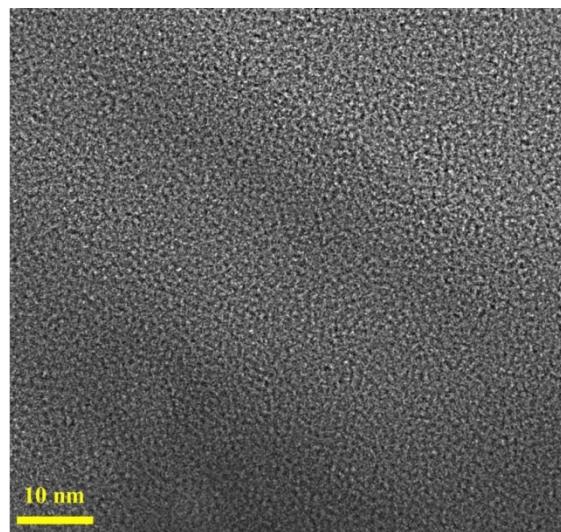


Figure S4. HR-TEM image for the 1st discharge products of CNT/Li₂S₆ cathode.

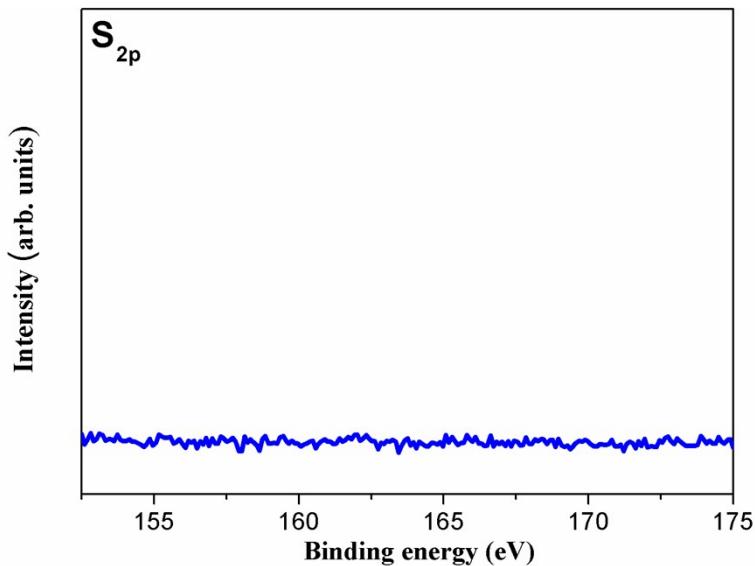


Figure S5. S 2p core-level XPS peak of the CNT cathode with Li_2S_6 additives before charge.

CNT was impregnated in the TEGDME solvent with Li_2S_6 additives, and then CNT was washed by acetonitrile and dried to do the XPS characterizations. We didn't observe any obvious S 2p in XPS, demonstrating that the Li_2S_6 additives can be fully washed away by acetonitrile. Therefore, after the 1st discharge, the S signal observed on the CNT/ Li_2S_6 cathode mainly originates from the discharge product, not from the remained Li_2S_6 additives.

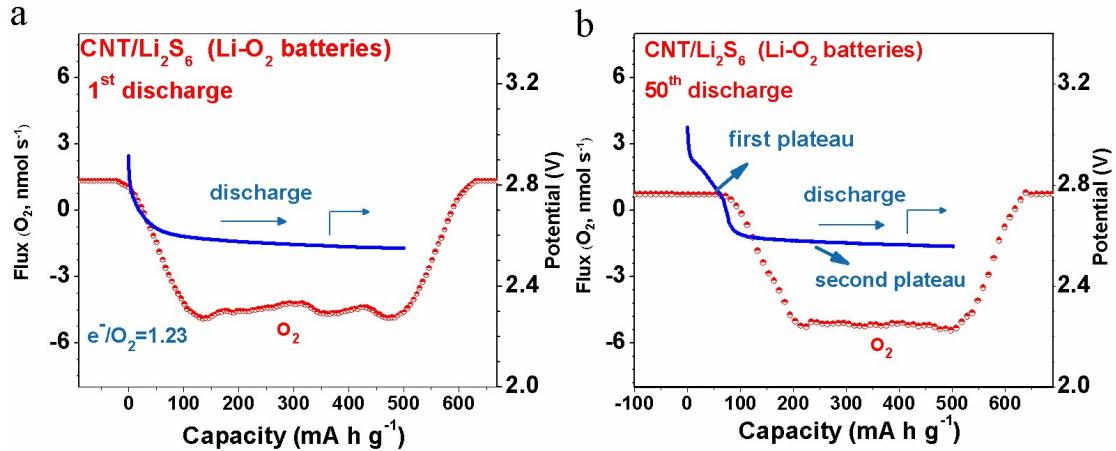


Figure S6. DEMS of CNT/Li₂S₆ for (a) the 1st and (b) the 50th discharge process at current of 0.7 mA at a limited capacity of 500 mAh g⁻¹.

The consumed ratio of electron and O₂ was confirmed by DEMS. O₂ is the only consumed gas and no evidence for the consumption of other gases (CO₂, H₂ etc.) during discharge process. The number of electrons per O₂ molecule for CNT/Li₂S₆ cathode is 1.23 (Figure S7a, Table S1). In addition, after the 50th discharge process, no O₂ consumption can be observed for the first platform.

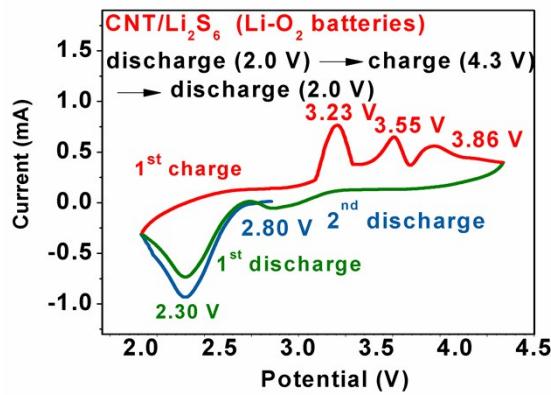


Figure S7. Cyclic voltammograms of CNT/Li₂S₆ under O₂, where CNT/Li₂S₆ is first discharged to 2.0 V, then charged to 4.3 V, and finally the CNT/Li₂S₆ cathode conducts the second discharge process to 2.0 V.

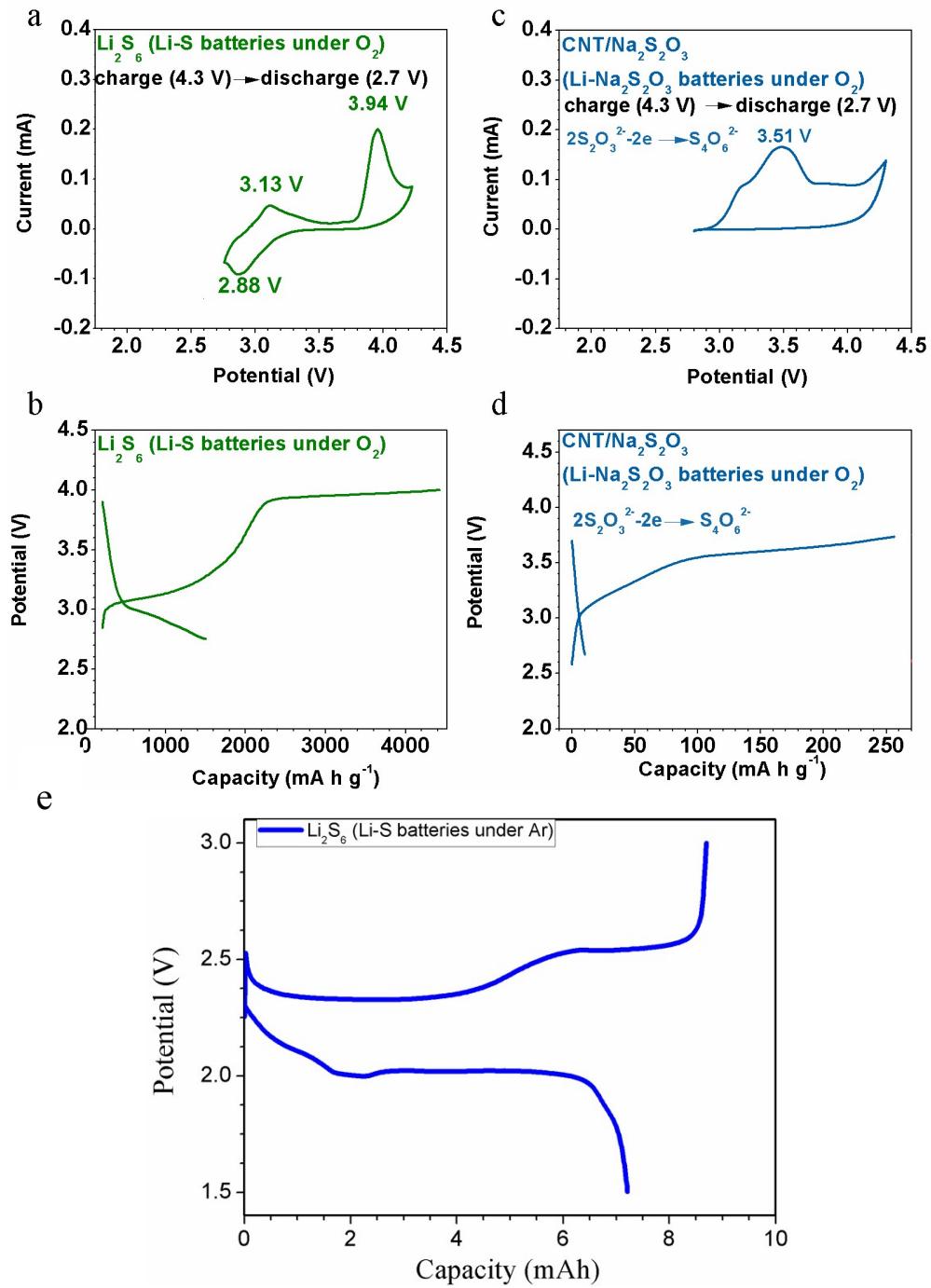


Figure S8. (a) Cyclic voltammograms and (b) the corresponding 1st charge-discharge curves (b) of Li_2S_6 (Li-S batteries under O_2), where Li_2S_6 is first charged to 4.3 V, and then is discharged to 2.7 V; (c) cyclic voltammograms and (d) the corresponding 1st charge-discharge curve of $\text{Na}_2\text{S}_2\text{O}_3$ (Li- $\text{Na}_2\text{S}_2\text{O}_3$ batteries under O_2), where $\text{Na}_2\text{S}_2\text{O}_3$ is first charged to 4.3 V, and then is discharged to 2.7 V, (e) discharge-charge curves of

the Li_2S_6 under Ar (Li-S batteries under Ar), where Li_2S_6 is first discharged to 1.5 V, and then is charged to 3.0 V.

Since $\text{Li}_2\text{S}_4\text{O}_6$ is inactive in TEGDME solvent,^[1] polysulfide (Li_2S_2 and soluble Li_2S_6) and thiosulfate ($\text{Li}_2\text{S}_2\text{O}_3$) are main active materials for charge process. Therefore, the charge processes of polysulfide (Li_2S_2 and Li_2S_6) and $\text{Li}_2\text{S}_2\text{O}_3$ are separately studied by assembling two kinds of batteries: Li-S batteries (active materials: Li_2S_6 and Li_2S_2) and $\text{Li}/\text{Na}_2\text{S}_2\text{O}_3$ batteries (active materials: $\text{Na}_2\text{S}_2\text{O}_3$). Because the ORR occurred at 2.7 V, we should limit the discharge voltage of Li-S batteries and $\text{Li}/\text{Na}_2\text{S}_2\text{O}_3$ batteries above 2.7 V to separately study the discharge behavior. Therefore, we first charge the $\text{Li}/\text{Na}_2\text{S}_2\text{O}_3$ batteries and Li-S batteries to 4.0 V followed by discharging to 2.7 V under O_2 atmosphere.

For Li-S batteries, charge processes of Li_2S_2 and Li_2S_6 were separately conducted. In terms of charge process of Li_2S_6 (Li-S batteries under O_2), two typical peaks at 3.14 V and 3.94 V (Figure S8a) as well as corresponding charge curve (Figure S8b) are observed. The peak at 3.14 V corresponds to the oxidation of Li_2S_6 to high-order polysulfide (Li_2S_x , $6 \leq x \leq 8$), while the peak at 3.94 V is ascribed to the oxidation of high-order polysulfide to sulfur (Figure S8a).^[2] These two oxidation peaks are also be identified from CNT/ Li_2S_6 cathode, implying that the peaks at 3.22 V and 3.86 V of CNT/ Li_2S_6 are due to oxidation of low-order polysulfide (Li_2S_2 and Li_2S_6) to high-order polysulfide (equation 3, Li_2S_x , $6 \leq x \leq 8$), and high-order polysulfide to sulfur, respectively.

For the oxidation process of $\text{Na}_2\text{S}_2\text{O}_3$ (Li- $\text{Na}_2\text{S}_2\text{O}_3$ batteries), the peak at 3.51 V (Figure S8c and S8d) is due to the oxidation of $\text{Li}_2\text{S}_2\text{O}_3$ to $\text{Li}_2\text{S}_4\text{O}_6$,^[3] and the capacity of 258 mAh g⁻¹ is near the theoretical capacity of $\text{Na}_2\text{S}_2\text{O}_3$ (339 mAh g⁻¹). Meanwhile, similar peak (3.55 V) is detected by charge process of CNT/ Li_2S_6 cathode (Figure 3a), indicating that the middle peak of CNT/ Li_2S_6 is due to the oxidation of $\text{Li}_2\text{S}_2\text{O}_3$ to $\text{Li}_2\text{S}_4\text{O}_6$.

For discharge process of Li-S batteries (active materials: Li_2S_6) under O_2 , the peak at 2.84 V is due to the reduction of sulfur to high-order polysulfide (Li_2S_x , $6 \leq x \leq 8$). In addition, inactive $\text{Li}_2\text{S}_4\text{O}_6$ is inactive and cannot be reduced from 4.0 V to 2.7 V.^[3] Therefore, the new reduction peak at 2.84 V of CNT/ Li_2S_6 belongs to the conversion of sulfur to high-order polysulfide (Li_2S_x , $6 \leq x \leq 8$).

It should be noted that the voltage of oxidation and reduction plateaus of Li_2S_6 (Li-S batteries under O_2) under O_2 are different from the typical oxidation and reduction potential of lithium-sulfur (Li-S) batteries under Ar (Figure S8e). This is due to the fact that Li_2S_6 (Li-S batteries under O_2) is charged under O_2 atmosphere, resulting in the obviously positive voltage shift of both oxidation and reduction plateau.

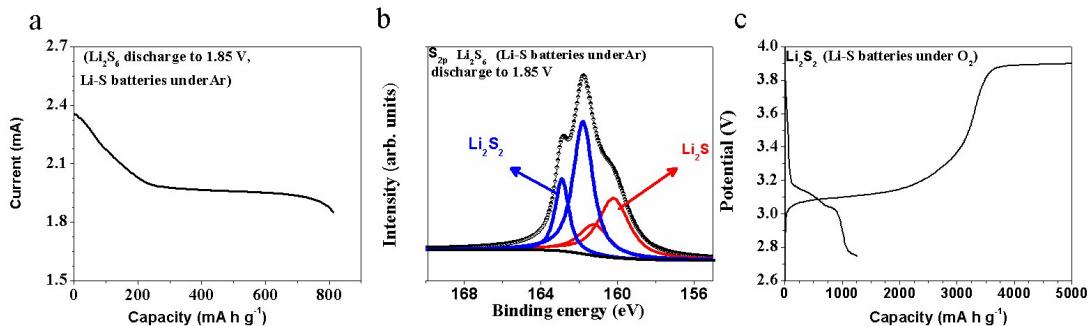


Figure S9. (a) Discharge curves of Li_2S_6 (Li-S batteries under Ar) when discharging to 1.85 V; (b) S 2p core level XPS spectrum of the discharge product when Li_2S_6 (Li-S batteries under Ar) is discharged to 1.85 V; (c) charge-discharge curves of Li_2S_2 (Li-S batteries under O₂). Li_2S_2 is first charged to 4.0 V, and then is discharged to 2.7 V.

Note: The mass of active materials in Figure S9a and Figure S9c is calculated by the mass of Li_2S_6 , and CNT respectively.

For the oxidation process of Li_2S_2 under O₂, we obtained the Li_2S_2 when Li_2S_6 is discharged to 1.85 V under Ar. The main discharge product is Li_2S_2 despite the existence of Li_2S (Li-S batteries under Ar, Figure S9b). The Li_2S_2 is charged to 4.0 V, and then is discharged to 2.7 V under O₂ (Li-S batteries under O₂). During charge process, the platform at 3.14 V is due to the oxidation of Li_2S_2 to high-order polysulfide (Figure 9c, Li_2S_x , $6 \leq x \leq 8$), while the platform at 3.89 V is due to the oxidation of high-order polysulfide (Figure 9c, Li_2S_x , $6 \leq x \leq 8$) to sulfur. For discharge process, the discharge process from 3.2 V to 2.7 V is due to the reduction of sulfur to high-order polysulfide (Figure 9c, Li_2S_x , $6 \leq x \leq 8$)

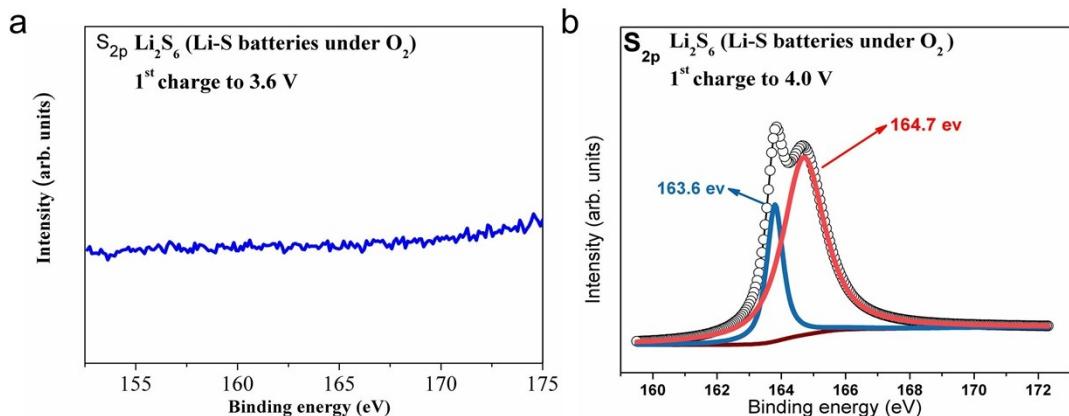


Figure S10. The Li_2S_6 additives were charged to 3.6 V and 4.0 V under O_2 , respectively. (a) S 2p core level XPS spectrum of the discharge product when Li_2S_6 (under O_2) is charged to 3.6 V; (b) S 2p core level XPS spectrum of the discharge products when Li_2S_6 (under O_2) is charged to 4.0 V.

We separately charged the Li_2S_6 (Li-S batteries under O_2) to 3.6 V and 4.0 V. No S signal can be identified in XPS results when Li_2S_6 is charged to 3.6 V, indicating the charge process of Li_2S_6 from 3.0 V to 3.6 V is due to oxidation of Li_2S_6 to soluble high-order polysulfide (Li_2S_x , $6 \leq x \leq 8$). Due to high solubility of high-order polysulfide, high-order polysulfide is totally washed by acetonitrile and cannot be detected by XPS (Figure S10a). When Li_2S_6 is charged to 4.0 V (Li-S batteries under O_2), the typical S_{2p} peaks of charged products are in consistence with S_8 molecules. This result indicated that charge process of Li_2S_6 from 3.6 V to 4.0 V was due to oxidation of high-order polysulfide (Li_2S_x , $6 \leq x \leq 8$) to sulfur.

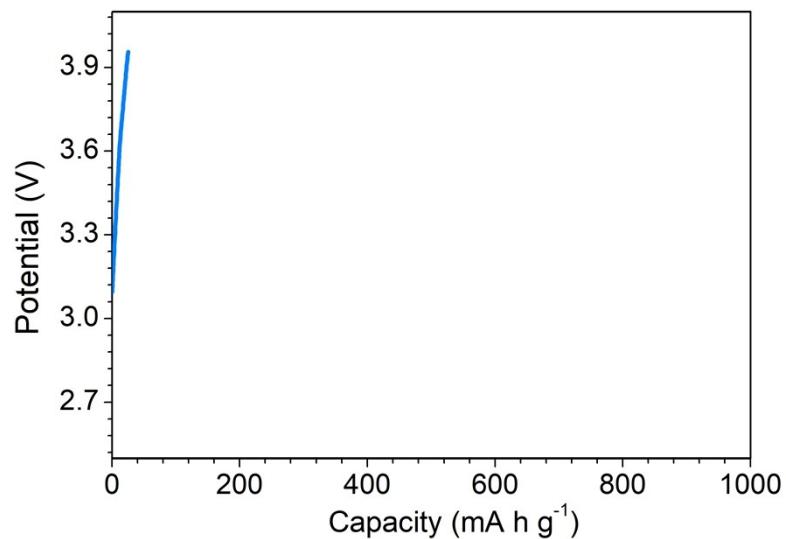


Figure S11. Charge profile of the CNT/S cathode under O₂.

The CNT/S cathode was charged from 3.0 V to 4.0 V under O₂. The voltage increases sharply and no obvious platform can be observed, indicating that sulfur is stable and cannot be oxidized from 3.0 V-4.0 V under O₂ atmosphere.

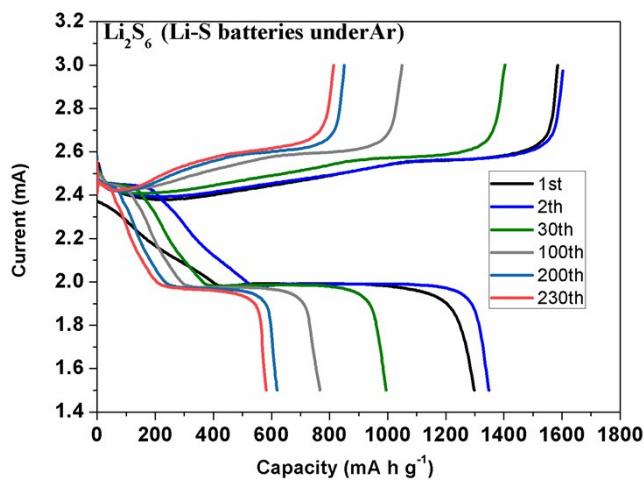


Figure S12. Cycle performance of Li₂S₆ (Li-S batteries under Ar). The higher charge capacity compared to the discharge capacity is due to the shuttle effect.

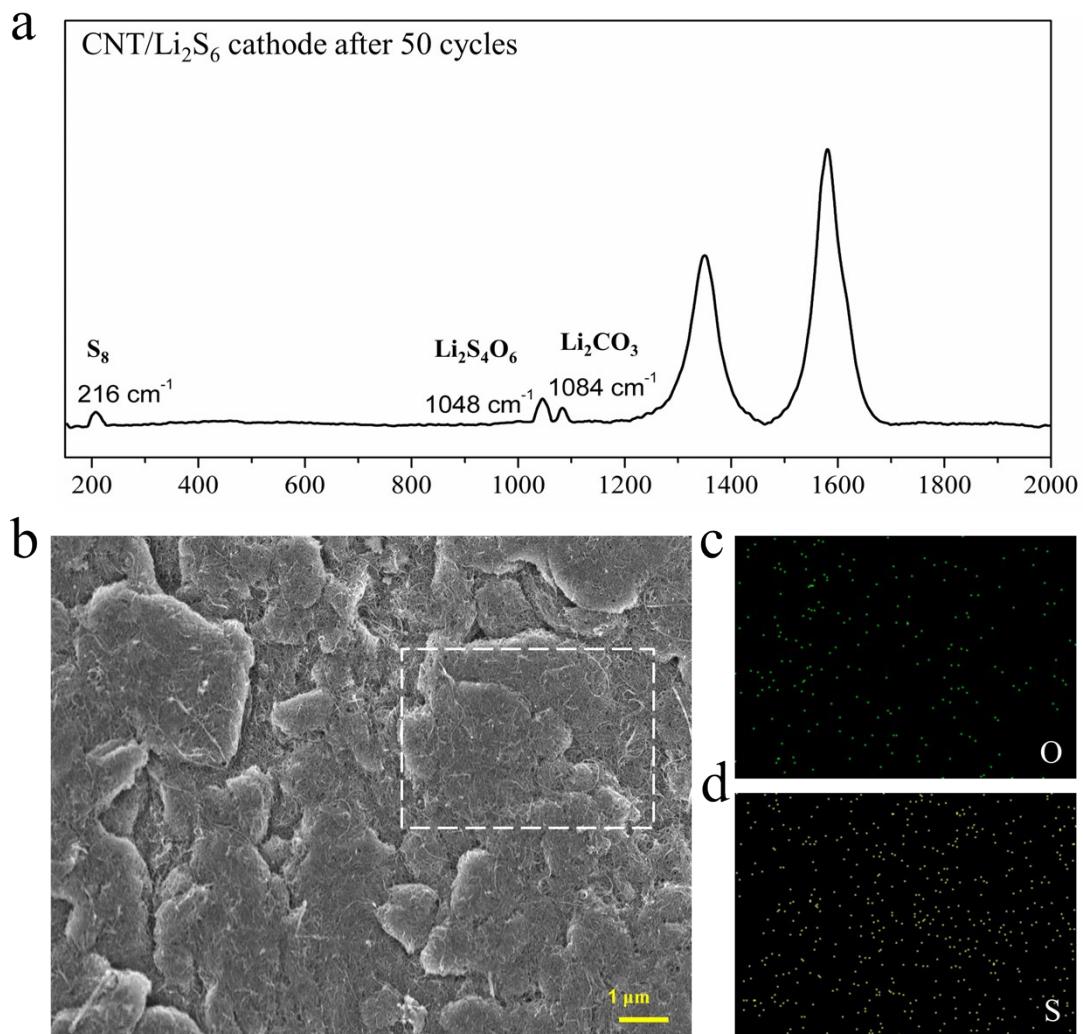


Figure S13. (a) Raman spectra of CNT/Li₂S₆ cathode after 50 cycles; (b) SEM images of CNT/Li₂S₆ cathode after 50th recharge; (c)-(d) EDX mapping of O and S for selected area in panel (b).

Table S1. O₂ electrochemistry quantified by DEMS: ratios of the number of electrons to oxygen molecules upon reduction (discharge process).

	Cycle number	discharge(e ⁻ /O ₂)
CNT(Li ₂ S ₆)	1	1.23
	50	1.13

Table S2. Summary of carbon-based catalysts and their related performance.

Catalyst	Charge overpotential	Cycle performance	Ref
Au@cracked carbon submicron tube	1.3 V at 400 mA g ⁻¹	112 cycles at 400 mA g ⁻¹ with 1000 mAh g ⁻¹	[4]
Reduced graphene oxide (LiI)	around 0 V at 100 mA g ⁻¹	2000 cycles at 1000 mA g ⁻¹ with 1000 mAh g ⁻¹	[5]
Carbonized and activated wood/Ru	0.72 V at 0.1 mA cm ⁻¹	100 cycles at 0.1 mA cm ⁻¹ with 0.6 mAh cm ⁻¹	[6]
Mesoporous Carbon Nanocube/Ru (LiNO ₃)	0.14 V at 200 mA g ⁻¹	120 cycles at 400 mA g ⁻¹ with 1000 mAh g ⁻¹	[7]
Polyethylene film@CNT	0.4 V at 2000 mA g ⁻¹	610 cycles at 400 mA g ⁻¹ with 1000 mAh g ⁻¹	[8]
Ketjen Black (UH ₂ O ₂)	0.26 V at 100 mAg ⁻¹	50 cycles at 500 mAg ⁻¹ with 1000 mAh g ⁻¹	[9]
Textile	0.75 V at 0.1 mA cm ⁻¹	50 cycles at 0.1 mA cm ⁻¹ with 1.0 mAh cm ⁻¹	[10]
ZnO/VACNTs	0.63 V at 0.1 mA cm ⁻¹	112 cycles at 0.1 mA cm ⁻¹ with 1000 mAh g ⁻¹	[11]
CNT/Li₂S₆	0.19 V at 0.5 A g⁻¹	147 cycles at 0.5 A g⁻¹ with 500 mAh g⁻¹	This work

References

- [1] G. K. Druschel, R. J. Hamers, J. F. Banfield, *Geochim. Cosmochim. Acta* 2003, 67, 4457.
- [2] T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu, G. Zhu, Y. Wang, J. Liang, Z. Tie, J. Liu, Z. Jin, *Nano Energy* 2017, 38, 239.
- [3] J. Feng, D. C. Johnson, S. N. Lowery, *J. Electrochem. Soc.* 1995, 142, 2618; A. Pedraza, I. Villegas, P. Freund, B. Chornik, *J. Electroanal. Chem.* 1988, 250, 443.
- [4] F. Tu, J. Hu, J. Xie, G. Cao, S. Zhang, S. A. Yang, X. Zhao, H. Y. Yang, *Advanced Functional Materials* 2016, 26, 7725.
- [5] T. Liu, M. Leskes, W. Yu, A. J. Moore, L. Zhou, P. M. Bayley, G. Kim, C. P. Grey, *Science* 2015, 350, 530.
- [6] H. Song, S. Xu, Y. Li, J. Dai, A. Gong, M. Zhu, C. Zhu, C. Chen, Y. Chen, Y. Yao, B. Liu, J. Song, G. Pastel, L. Hu, *Advanced Energy Materials* 2017, 1701203.
- [7] B. Sun, S. Chen, H. Liu, G. Wang, *Advanced Functional Materials* 2015, 25, 4436.
- [8] L. Wang, J. Pan, Y. Zhang, X. Cheng, L. Liu, H. Peng, *Adv Mater* 2017.
- [9] S. Wu, Y. Qiao, S. Yang, M. Ishida, P. He, H. Zhou, *Nat. Commun.* 2017, 8, 15607.
- [10] S. Xu, Y. Yao, Y. Guo, X. Zeng, S. D. Lacey, H. Song, C. Chen, Y. Li, J. Dai, Y. Wang, Y. Chen, B. Liu, K. Fu, K. Amine, J. Lu, L. Hu, *Adv Mater* 2017.
- [11] W. Fan, B. Wang, X. Guo, X. Kong, J. Liu, *Nano Energy* 2016, 27, 577.