SUPPORTING INFORMATION

Less Active CeO₂ regulating Bifunctional Oxygen Electrocatalytic Activity of Co₃O₄@N-doped Carbon for Zn-air Battery

Xiaobo He^{1, 3+}, Xuerui Yi²⁺, Fengxiang Yin^{1, 3*}, Biaohua Chen¹, Guoru Li¹, Huaqiang

Yin⁴

¹ Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

² College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China

³ Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164, PR China

⁴ Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of Education, Tsinghua University, Beijing 100084, PR China

*Corresponding author

Tel.: +86-519-86330253

E-mail: yinfx@cczu.edu.cn (F. Yin)

These

+

authors

contributed

equally.

RHE conversion

We have calibrated the reference electrode to RHE by the method presented in Y.Y. Liang, et al. (Nature Mater. 2011, 10, 780-786.). The calibration was conducted in a H₂-saturated 0.1 M KOH electrolyte with a Pt wire as the working electrode. The CV was run at a sweep rate of 1 mV s⁻¹ and the average of two potentials at which current crossed zero was regarded as the thermodynamic potential of hydrogen electrode reaction.

In this study, the potentials measured have been calibrated by the following equation: $E_{(RHE)} = E_{(Ag/AgCl)} + 0.955 \text{ V}.$

Supplementary Figures and Notes

Fig. S1. Structural information of the samples prepared in air, including Co-600Air, CoCe-600Air, and Ce-600Air: (a) XRD patterns, (b) Raman spectra, (c) N₂ adsorptiondesorption isotherms, (d) Pore size distributions, (e) XPS spectra of Co 2p, (f) XPS spectra of Ce 3d, (g) XPS spectra of O 1s, (h) CO₂-TPD curves, and (i) NH₃-TPD curves.

Fig. S2. TEM and HRTEM images: (a) and (b) Co-600Air; (c) and (d) CoCe-600Air; (e) and (f) Ce-600Air.

Fig. S3. Size distribution of nanoparticles of the resulting electrocatalysts. (a) Co-600N₂. (b) CoCe-600N₂. (c) Ce-600N₂. (d) Co-600Air. (e) CoCe-600Air (f) Ce-600Air.

Note S1. Structural characterizations of the samples prepared in air, including Co-600Air, CoCe-600Air and Ce-600Air.

Fig. S1a shows the XRD patterns of Co-600Air, CoCe-600Air and Ce-600Air. The diffraction peaks show that Co-600Air and Ce-600Air contain Co₃O₄ (PDF₂65-3103) and CeO₂ (PDF₂34-0394), respectively. The CoCe-600Air includes both Co₃O₄ and CeO₂. Fig. S1b show the Raman spectra of the samples prepared in air. Both Co-600Air and CoCe-600Air show four distinct peaks at 466 cm⁻¹, ~510 cm⁻¹, ~608 cm⁻¹ and ~670 cm⁻¹ correspond to the E_g , $F_{2g}{}^1$, $F_{2g}{}^2$ and $A_g{}^1$ bands for Co₃O₄, respectively. Ce-600Air shows the single F_{2g} peak for CeO₂ at 464 cm⁻¹. Notably, the peak around 466 cm⁻¹ in CoCe-600Air can be assigned to the combined contributions from the F_{2g} for CeO₂ and the Eg for Co₃O₄. The N₂ adsorption-desorption isotherms of Co-600Air, CoCe-600Air and Ce-600Air are shown in Fig. S1c. The solid and hollow marks represent the adsorption and desorption branches, respectively. The typical H3-typed hysteresis loops were observed, suggesting mesopores in these electrocatalysts. Fig. S1d shows the pore size distributions of the samples. The average pore sizes of mesopores are ~2.05 nm, ~2.04 nm and ~2.22 nm for Co-600Air, CoCe-600Air and Ce-600Air, respectively. The BET specific surface areas (SSAs) of Co-600Air, CoCe-600Air and Ce-600Air are ~15.1 m² g⁻¹, ~31.5 m² g⁻¹ and ~54.8 m² g⁻¹, respectively. The pore volumes of Co-600Air, CoCe-600Air and Ce-600Air are ~0.03 cm3 g-1, ~0.07 cm3 g-1 and ~ 0.18 cm³ g⁻¹, respectively. The relevant parameters of the pores in them are summarized in Table S1. The Co 2p, Ce3d and O 1s XPS spectra of the samples prepared in air are shown in Fig. S1e-1g and Table S2. The binding energies of Co²⁺

and Co^{3+} of Co $2p_{3/2}$ in CoCe-600Air have some shifts toward the lower binding energy relative to Co-600Air. The binding energy of Ce species (Ce⁴⁺ and Ce³⁺) in CoCe-600Air is slightly shifted toward the higher binding energy. The binding energies of O1, O2 and O3 in CoCe-600Air show some shifts toward the higher binding energy compared to Ce-600Air, but still lower than those in Co-600Air. CO₂-TPD results (Fig. S1h) show the CO₂ desorption peaks of Co-600Air, CoCe-600Air and Ce-600Air centers at ~146.2 °C, ~206.9 °C and ~173.4 °C, respectively. The calculated basicity amounts of Co-600Air, CoCe-600Air and Ce-600Air are ~0.03 mmol g⁻¹, ~0.15 mmol g⁻¹ and ~0.25 mmol g⁻¹, respectively. NH₃-TPD results (Fig. S1i) show the NH₃ desorption peaks of Co-600Air, CoCe-600Air and Ce-600Air centers at ~166.3 °C, ~181.1 °C and ~174.3 °C, respectively. The calculated acidity amounts of Co-600Air, CoCe-600Air and Ce-600Air are ~0.04 mmol g^{-1} , ~0.39 mmol g^{-1} and ~1.24 mmol g^{-1} , respectively. Fig. S2 shows the TEM and HRTEM images for Co-600Air, CoCe-600Air and Ce-600Air. The TEM image of Co-600Air (Fig. S2a) exhibits the irregularly shaped nanoparticles. HRTEM image (Fig. S2b) shows the d-spacing value of ~0.29 nm, corresponding to the (220) plane of Co₃O₄. In CoCe-600Air, the CeO₂/Co₃O₄ hybrid nanostructures are observed in its TEM and HRTEM images (Fig. S2c and S2d). The d-spacing of ~0.19 nm and ~0.29 nm are assigned to the (220) plane of the fluoritetyped cubic CeO₂ and the (220) plane of Co₃O₄, respectively. The TEM image of Ce-600Air (Fig. S2e) shows the sheet-like morphology, which is composed of abundant small CeO₂ nanoparticles with non-uniformed sizes (Fig. S3). The HRTEM (Fig. S2f) shows d-spacing of ~ 0.31 nm, corresponding to the (111) planes of CeO₂.

Fig. S4. The ORR and OER activity of Co-600Air, CoCe-600Air, and Ce-600Air: (a) ORR LSV curves at a scan rate of 5 mV s⁻¹ under 1600 rpm. (b) The corresponding Tafel plots. (c) The electron transfer number (n) and peroxide yield at various potentials.

Fig. S5. K-L plots at different potentials of (a) $Co-600N_2$, (b) $CoCe-600N_2$, (c) $Ce-600N_2$, (d) 20 wt% Pt/C, (e) Co-600Air, (f) CeCo-600Air and (g) Ce-600Air.

Fig. S6. ORR LSV curves at a scan rate of 5 mV s⁻¹ under 1600 rpm in 0.1 M HClO₄ (dashed line) and 0.1 M KOH (solid line), respectively, for Co-600N₂, Ce-600N₂ and CeCo-600N₂.

Fig. S7. (a) OER LSV curves at a scan rate of 5 mV s⁻¹ under 1600 rpm. (b) The corresponding Tafel plots.

Fig. S8. EIS Nyquist plots at the open circuit potential and the simulated equivalent circuit (inset) for (a) Co-600N₂, Ce-600N₂, CeCo-600N₂ and (b) Co-600Air, Ce-600Air, CeCo-600Air.

\

Supplementary Tables

			Micropore	Mesopore
Samples	BEI SSA	Pore volume	size	size
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	(nm)
Co-600N ₂	165.4	0.29	0.41	2.39
CoCe-600N ₂	173.5	0.22	0.50	2.23
Ce-600N ₂	287.1	0.36	0.45	2.56
Co-600Air	15.1	0.03		2.05
CoCe-600Air	31.5	0.07		2.04
Ce-600Air	54.8	0.18		2.22

Table S1. Pore structures for the electrocatalysts prepared in N_2 and air.

Table S	S2. Binding	energy of	different	species	determined	by XPS.
---------	--------------------	-----------	-----------	---------	------------	---------

N 1s			Ce 3	Ce 3d _{5/2}			Co 2p _{3/2}			O 1s		
Samples	Pyridinic -N	Pyrrolic -N	Quaternar y -N	Oxidized -N	Ce ³⁺	Ce ⁴⁺	Co ⁰	Co ²⁺	Co ³⁺	O3	02	01
Co-600N ₂	398.5	399.8	400.9				778.	781. 6	779. 7	530.0	531.7	533.6
CoCe-600 N ₂	398.4	399.6	400.9	406.4	884.6, 903.1	882.3, 888.7,898.2, 900.8, 907.7,916.7		781.	779. 5	529.8	531.5	532.9
Ce-600 N ₂	398.2	399.7	400.8	406.7	884.2, 902.9	882.1, 888.4,				529.7	531.4	532.8

				897.9,					
				900.6,					
				907.5, 916.5					
Co-600Air	 	 			 781.	779.	530.2	531.6	533 1
C0 000711					1	7	550.2	551.0	555.1
				882.4,					
				889.2,	780	779			
CoCe-600Air	 	 	884.8, 902.9	898.4,	 9	5	529.8	531.4	532.3
				900.9,)	5			
				907.8, 916.8					
				882.3,					
Ce-600Air	 	 	884.9, 903.0	889.0, 898.3	 		529.6	530.8	532.0
				990.8,					

907.8, 916.7

N 1s (at. %)					Ce 3d (at. %)		Co 2p (at. %)			O 1s (at. %)							
Samples	Pyridinic	Pyrrolic	Quaterna	Oxidized	Tot	Ce ³⁺		Tota				Co ²⁺	Tota				Tota
Samples	-N	-N	ry-N	-N	al	/	Ce ⁴⁺	1	Co ⁰	Co ²⁺	Co ³⁺	+Co	1	03	02	01	1
	-18	-1 1	19-19	-18	Ν			Ce				3+	Co				0
C_{0} 600N	1 79	1 54	1 5 1		4.8				0.5	0.02	1.02	1.06	2 40	1.0	3.4	1.2	5 65
C0-600N ₂ 1.78 1.54 1.51		3				3	0.95	1.05	1.90	2.49	2	2	1	5.05			
CoCe-	1 70	1.62	2.07	2 10	7.5	0.42	1 (4	2.00		5 00	5 70	11.6	11.6	19.	9.1	5.0	34.0
600N ₂	1.79	1.03	2.07	2.10	9	0.42	1.04	2.00		3.88	5.72	11.6	11.6	79	6	6	1
C (00)1	0.00	1 7 1	1.07	0.64	47	0.00	4.60	C C 1						16.	7.9	3.5	27.4
Ce-600N ₂	0.98	1./1	1.37	0.64	4./	0.89	4.62	5.51						03	0	3	6
G (004)										5 70	5.05	10.9	10.9	20.	5.3	4.9	30.9
Co-600A1r										5.72	5.25	7	7	63	7	5	5

Table S3. The surface compositions of the samples determined by XPS.

CoCe-			1 10	4 22	5 4 1	7 70	5.26	12.9	12.9	31.	6.2	3.1	40.8
600Air	 	 	 1.18	4.23	5.41	 1.12	5.20	8	8	52	2	1	5
Ce-600Air	 	 	 2 46	11.5	13.9	 				33.	4.5	3.9	42.1
	 	 	 2.40	3	9	 				63	8	0	1

							OFD			Overall
		O	KR activity				UEK	activity		evaluation
				Current		Potential				
			Limiting		ORR		Overpotent	Current		
Electro estelvata	Orgat	Half-	aurrant	density	Tafal	(a)	ial@	donaity of	OED Tafal	
Electrocatarysts	Onset	wave	current	at 0 76	Talei	10 mA	laiw	density at	OEK Talel	$\Delta E = E_{i=10} - $
	Potential	Wave	Density	ut 0.70	Slope	10 111 1	10 mA cm ⁻	overpotential	Slope	$\Delta L = L_{j=10}$
		potential	-	(mA	-	cm ⁻²		-	-	$E_{1/2}(V)$
	(V)		(mA cm ⁻	2	(mV		2	of 470 mV	$(mV dec^{-1})$	
		(V)	2)	cm ⁻²)	daa-1)	$E_{j=10}$	m (mV)			
			-)		dec ⁺)	(V)	η_{10} (mv)	(v)		
						(•)				
Co-600Air	0.90	0.68	3.94	0.15	79.0	1.741	511	4.67	105.3	1.06
		~ - (0.20	60 G			4.6.40		
CoCe-600A1r	0.92	0.74	4.44	0.29	68.6	1.657	427	16.42	99.2	0.92
Ce-600Air	0.75	0.61	2.82	0.01	88.9	N.A	N.A	0.52	387.7	N.A

Table S4. Summary of ORR and OER activity of the samples prepared in air.

Electrocatalyst	Electrolyte	$E_{1/2}$ (V) vs. RHE	<i>E_{j=10}</i> (V) vs. RHE	$\Delta E \left(\mathbf{V} \right)$ $\left(E_{j=10} - E_{1/2} \right)$	Refs.
CeO ₂ /Co ₃ O ₄ @NC	0.1 M KOH	0.87	1.51	0.64	This work
Co-N@HCS	0.1 M KOH	0.86	1.72	0.86	S1
3D NCNT array	0.1 M KOH	0.81	1.65	0.84	S2
Pd@PdO-Co ₃ O ₄	0.1 M KOH	0.73	1.54	0.81	S3
RuO ₂	0.1 M KOH	0.37	1.64	1.27	S4
Pt/C	0.1 M KOH	0.90	1.90	1.00	S4
Co@Co ₃ O ₄ /NC-1	0.1 M KOH	0.80	1.65	0.85	S4
CoO/N-graphene	1 M KOH	0.81	1.57	0.76	S5
NC@Co-NGC DSNCs	0.1 M KOH	0.82	1.64	0.82	S6
Co-CoO- Co ₃ O ₄ /NC	0.1 M KOH	0.80	1.63	0.83	S7

 Table S5. Comparison of the bifunctional activity of the recently reported oxygen
 electrocatalysts.

Electrocatalysts	ORR mass activity (A g_{cat}^{-1}) ^{a)}	OER mass activity (A g_{cat}^{-1}) ^{b)}
Co-600Air	0.63	19.46
CoCe-600Air	1.21	68.42
Ce-600Air	0.04	2.17

Table S6. ORR and OER mass activity of the resulting electrocatalysts prepared in air.

^{a)} The ORR mass activity was obtained through normalization of kinetic current density at 0.76 V to the mass loading of the resulting electrocatalysts on the GC electrode. ^{b)} The OER mass activity was obtained by normalization of current density at the overpotential of 470 mV to the loading mass of the resulting electrocatalysts on the GC electrode.

		Specific	Energy	Cycle	
Electroentelyst	Flootrolyto	capacity	density	Condition	Dofe
Electrocataryst	Electrolyte	(mAh	(Wh	(mA cm ⁻	KCIS.
		g_{Zn}^{-1})	kg _{Zn} ⁻¹)	²)	
	6.0 M KOH + 0.10	(42)	205	5	This
$CeO_2/Co_3O_4(a)$ NC	M ZnCl ₂	643	805	3	work
	6.0 M KOH + 0.20	750	0.40	2	0.0
NGM-Co	M ZnCl ₂	/50	840	2	58
NPMC-1000	6.0 M KOH	735	835	2	S9
	6.0 M KOH + 0.20	~ 	0.4.5	-	G10
CoN1@NCN1/NF	M Zn(Ac) ₂	655	845	5	S10
Co@Co ₃ O ₄ @NC-				_	~
900	6.0 M KOH	640		5	S11
	6.0 M KOH + 0.20				
Mo–N/C@MoS ₂	M Zn(Ac) ₂		846.07	5	S12
CNT/graphene	6.0 M KOH	712	872	5	S13
	6.0 M KOH + 0.20				
Porous C fiber film	M Zn(Ac) ₂	660	838	5	S14
	6.0 M KOH + 0.20				
Co ₃ O ₄ /N-rGO	M ZnCl ₂	550	649	6	S15

Table S7. Comparisons of the performance of Zn-air batteries with recently reported

 bifunctional electrocatalysts.

NCNE/Co Mr. O	6.0 M KOH + 0.20	501	605	7	S 16
INCINF/C0 _x IVIII _{1-x} O	M ZnCl ₂	381	095	/	510
NCNT/CoO-	6.0 M KOH + 0.20	504	712	7	S 17
NiONiCo	M ZnCl ₂	394	/15	/	517
NONE/Co Mr. O	6.0 M KOH + 0.20	501	605	7	S 16
INCINF/C0 _x IVIII _{1-x} O	M ZnCl ₂	381	095	/	510
NCNT/CoO-	6.0 M KOH + 0.20	504	712	7	S17
NiONiCo	M ZnCl ₂	334	/15	,	517
NCNE	6.0 M KOH + 0.20	676	776	10	S 14
INCINI	M ZnCl ₂	020	770	10	514
Porous C fiber film	6.0 M KOH + 0.20	626	776	10	S14
	M Zn(Ac) ₂	020	770	10	514
CoZn-NC-700	6.0 M KOH + 0.10	578	694	10	S 18
	M ZnCl ₂	576	074	10	510
Ni ₂ Fe/N-C	6.0 M KOH + 0.20	528	634	10	S19
	M ZnCl ₂	520	001	10	517
NiCo2S4/N-CNT	6.0 M KOH + 0.20	431.1	554.6	10	S20
	M ZnCl ₂	191.1	221.0	10	520
BHPC-950	6.0 M KOH	797	963	20	S21
NCO-A1	6.0 M KOH	580		20	S22
Ag-Cu on Ni foam	6.0 M KOH + 0.20	572	641	20	S 23
	M ZnCl ₂		~ · ·	_•	5-5

CoO/N-CNT+NiFe	6.0 M KOH + 0.20	570	700	20	S24
LDH	M ZnCl ₂	570	100	20	521
CoO NRs	6.0 M KOH	541.3	583.3	20	S25
NCNT/CoO-	6.0 M KOH + 0.20	5 4 5	(15	20	017
NiONiCo	M ZnCl ₂	545	615	20	517

Supplementary References

- S. C. Cai, Z. H. Meng, H. L. Tang, Y. Wang and P. Tsiakaras, *Appl. Catal.*, *B*, 2017, 217, 477-484.
- S2. Z. H. Li, M. F. Shao, Q. H. Yang, Y. Tang, M. Wei, D. G. Evans and X. Duan, *Nano Energy*, 2017, **37**, 98-107.
- S3. H. C. Li, Y. J. Zhang, X. Hu, W. J. Liu, J. J. Chen and H. Q. Yu, Adv. Energy Mater., 2018, 8, 1702734.
- S4. A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W.
 Schuhmann and M. Muhler, *Angew. Chem. Int. Ed.*, 2016, 55, 4087-4091.
- S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- S6. S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C. Y. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.*, 2017, 29, 1700874.
- S7. X. R. Yi, X. B. He, F. X. Yin, B. H. Chen, G. R. Li and H. Q. Yin, *Electrochim. Acta*, 2019, **295**, 966-977.
- S8. C. Tang, B. Wang, H. F. Wang and Q. Zhang, Adv. Mater., 2017, 29, 1703185.
- S9. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nat. Nanotechnol.*, 2015, **10**, 444-452.
- S10. W. Niu, S. Pakhira, K. Marcus, Z. Li, J. L. Mendoza-Cortes and Y. Yang, Adv. Energy Mater., 2018, 8, 1800480.
- S11. Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang and Y. Xia, *J. Mater. Chem. A*, 2018, 6, 1443-1453.
- S12. I. S. Amiinu, Z. Pu, X. Liu, K. A. Owusu, H. G. R. Monestel, F. O. Boakye, H.

Zhang and S. Mu, Adv. Funct. Mater., 2017, 27, 1702300.

- S13. J. Yang, H. Sun, H. Liang, H. Ji, L. Song, C. Gao and H. Xu, *Adv. Mater.*, 2016,
 28, 4606-4613.
- S14. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28, 3000-3006.
- S15. Y. Li, C. Zhong, J. Liu, X. Zeng, S. Qu, X. Han, Y. Deng, W. Hu and J. Lu, Adv. Mater., 2018, 30, 1703657.
- S16. X. Liu, M. Park, M. G. Kim, S. Gupta, X. Wang, G. Wu and J. Cho, Nano Energy, 2016, 20, 315-325.
- S17. X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu and J. Cho, *Angew. Chem. Int. Ed.*, 2015, 54, 9654-9658.
- S18. B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu, R. Shi, J. Chen and H. Yin, Adv. Funct. Mater., 2017, 27, 1700795.
- S19. G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang and J. B. Goodenough, *Adv. Energy Mater.*, 2017, 7, 1601172.
- S20. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao and W. Hu, *Nano Energy*, 2017, 31, 541-550.
- S21. M. Yang, X. Hu, Z. Fang, L. Sun, Z. Yuan, S. Wang, W. Hong, X. Chen and D. Yu, *Adv. Funct. Mater.*, 2017, 27, 1701971.
- S22. M. Prabu, K. Ketpang and S. Shanmugam, *Nanoscale*, 2014, 6, 3173-3181.
- S23. Y. Jin and F. Chen, *Electrochim. Acta*, 2015, **158**, 437-445.
- S24. Y. Li, M. Gong, Y. Liang, J. Feng, J. E. Kim, H. Wang, G. Hong, B. Zhang and
 H. Dai, *Nat. Commun.*, 2013, 4, 1805.

S25. P. Da, M. Wu, K. Qiu, D. Yan, Y. Li, J. Mao, C. Dong, T. Ling and S. Qiao, *Chem. Eng. Sci.*, 2019, **194**, 127-133.