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Detailed process of Rietveld refinement

Since this is the first fabrication of MoNb12O33, no existing crystal data for 

MoNb12O33 can be found in previous reports. However, on the basis of the known 

crystal data of WNb12O33, the detailed crystal structure of MoNb12O33 was 

successfully clarified through a Rietveld refinement. First, the “cif” (Crystallographic 

Information File) file of WNb12O33 was imported into the GSAS program. Second, in 

the program, “W” was changed to “Mo”. Third, two files respectively containing the 

instrumental parameters and experimental diffraction data were imported into the 

program. Finally, the following instrumental and structural parameters were 

successively refined: background parameters, zero-shift, unit-cell parameters, profile 

parameters, atomic fractional coordinates, and atomic isotropic displacement 

parameters. All isotropic temperature factors were fixed to be the same. The site 

occupancies were assumed to fulfill the stoichiometric composition of MoNb12O33. 

The site occupancy of oxygen atoms was fixed to be unity.
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Fig. S1. XRD patterns of P-MoNb12O33 calcined at 650, 660, 670 and 680 °C.

Fig. S2. (a, b) FESEM, (c) TEM and (d) EDX mapping images of M-MoNb12O33.
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Fig. S3. (a) HRTEM image and (b) SAED pattern of M-MoNb12O33.

Fig. S4. Nyquist plots of M-MoNb12O33 and P-MoNb12O33 (inset: selected equivalent 

circuit).

As can be seen in Fig. S4, each Nyquist plot consists of two depressed 

semicircles and one slope. According to a previous study [S1], the semicircle 

observed in the high-frequency region refers to the synergistic effect of the Li+ 

desolvation, electron transfer and adsorption, which is denoted as the R1/CPE1 pair in 

the equivalent circuit (Fig. S4 inset). The other semicircle observed in the medium-
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frequency region is associated with the Li+ insertion at the MoNb12O33 particle 

surfaces (the R2/CPE2 pair). The slope observed in the low-frequency region 

corresponds to the Warburg resistance (W), representing the Li+ diffusion in the 

MoNb12O33 lattice. Rb in the equivalent circuit embodies the Ohmic resistance of the 

cell, primarily originating from the electrolyte. The fitted R1 and R2 values for the M-

MoNb12O33 sample are 248 and 1047 Ω, respectively. In contrast, those for the P-

MoNb12O33 sample were significantly decreased to 109 and 293 Ω. Therefore, the 

porous microspheres with small primary particles enabled faster Li+ desolvation, 

electron transfer, adsorption and Li+ insertion at the active particle surfaces, further 

confirming the better electrochemical kinetics of P-MoNb12O33. This finding 

coincides with the CV (Fig. 4a) and galvanostatic discharge–charge (Fig. 4b) results.

Fig. S5. (a, b) Ex-FESEM images of P-MoNb12O33 electrode at 10C after 1000 cycles.
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Fig. S6. (a) CV curves of M-MoNb12O33 from 0.2 to 1.1 mV s–1. (b) Calculation of a-

values for M-MoNb12O33 by using relationship between peak current and sweep rate. 

(c) Pseudocapacitive contribution ratio of M-MoNb12O33 at different sweep rates. (d) 

Pseudocapacitive contribution of M-MoNb12O33 at 1.1 mV s–1.
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Fig. S7. Relationship between peak current of cathodic/anodic reaction (Ip) and square 

root of sweep rate (v0.5) for M-MoNb12O33.

Fig. S8. XRD pattern of LiMn2O4 in this work.
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Fig. S9. (a, b) FESEM images of LiMn2O4 in this work.

Fig. S10. Charge–discharge profiles of LiMn2O4 in this work at 0.1C.
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Table S1. Fractional atomic parameters of MoNb12O33 with C2 space group.

atom site x y z

Mo 2a 0 0.25 0

Nb1 4c 0.367537 0 0.044215

Nb2 4c 0.246574 0 0.135585

Nb3 4c 0.130339 0 0.230816

Nb4 4c 0.416347 0 0.377805

Nb5 4c 0.295871 0 0.474168

Nb6 4c 0.467645 0 0.715923

O1 2b 0 0.5 0.5

O2 4c 0.161909 0 -0.007014

O3 4c 0.296566 0 0.089035

O4 4c 0.020596 0 0.083760

O5 4c 0.452604 0 0.157945

O6 4c 0.187949 0 0.176336

O7 4c 0.053749 0 0.267702

O8 4c 0.311234 0 0.236494

O9 4c 0.479191 0 0.323294

O10 4c 0.217692 0 0.356493

O11 4c 0.347232 0 0.425273

O12 4c 0.224570 0 0.528960

O13 4c 0.383602 0 0.603455

O14 4c 0.079680 0 0.626197

O15 4c 0.381981 0 0.755691

O16 4c 0.271839 0 0.893514

O17 4c 0.426748 0 0.976852
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Table S2. Potentials at cathodic/anodic CV peaks and potential differences of M-

MoNb12O33/Li and P-MoNb12O33/Li cells at 0.2 mV s–1 (2nd cycle).

sample
potential at 

cathodic peak (V)

potential at 

anodic peak (V) 

potential 

difference (V)

M-MoNb12O33

(Mo4+/Mo5+，

Mo5+/Mo6+ and 

Nb4+/Nb5+)

1.723 1.837 0.114

P-MoNb12O33 

(Mo4+/Mo5+，

Mo5+/Mo6+ and 

Nb4+/Nb5+)

1.787 1.843 0.056

M-MoNb12O33 

(Nb3+/Nb4+) 1.113 1.434 0.321

P-MoNb12O33 

(Nb3+/Nb4+) 1.183 1.321 0.138
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Table S3. Comparisons of practical/theoretical capacity of M-MoNb12O33/P-

MoNb12O33 with intercalating anode materials previously reported.

material
theoretical capacity 

(mAh g–1)

practical capacity 

(mAh g–1)

reference 

P-MoNb12O33 401 321 this work

M-MoNb12O33 401 294 this work

graphite 372 310 [S2]

Li4Ti5O12 175 169 [S3]

TiNb2O7 388 281 [S4]

Ti2Nb10O29 396 247 [S5]

TiNb24O62 402 296 [S6]

TiNb6O17 397 328 [S7]

Nb2O5 403 210 [S8]

Nb12O29 374 287 [S9]

Nb25O62 396 289 [S9]

FeNb11O29 400 270 [S10]

GaNb11O29 379 264 [S11]

ZrNb24O62 388 320 [S12]

Cr0.5Nb24.5O62 403 344 [S13]

GeNb18O47 386 217 [S14]

PNb9O25 381 200 [S15]

VNb9O25 416 220 [S16]

W9Nb8O47 289 238 [S17]
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Table S4. Comparisons of electrochemical properties of M-MoNb12O33 and P-

MoNb12O33 with niobium-based oxide anode materials previously reported.

material
current 

rate (C)

electrochemical property

(mAh g–1)
reference

P-MoNb12O33 10 ~208 at 1000th cycles this work

M-MoNb12O33 10 ~123 at 1000th cycles this work

TiNb2O7 nanoparticles 10 ~123 at 500th cycles [S18]
porous TiNb2O7 

nanospheres 5 ~212 at 1000th cycles [S19]

ordered mesostructured 
TiNb2O7

10 ~200 at 2000th cycles [S20]

TiNb2O7 nanofibers 5 ~133 at 100th cycles [S21]

TiNb2O7 nanorods 10 ~140 at 100th cycles [S22]
three-dimentional ordered 

macroporous TiNb2O7
10 ~87 at 100th cycles [S23]

Cu0.02Ti0.94Nb2.04O7 10 ~180 at 1000th cycles [S24]

Ru0.01Ti0.99Nb2O7 5 ~162 at 100th cycles [S25]
Ti2Nb10O29/reduced 

graphene oxide 4 ~120 at 50th cycles [S26]

Ti2Nb10O27.1 5 ~164 at 100th cycles [S27]

Ti2Nb10O29/Ag 10 ~142 at 500th cycles [S28]
Ti2Nb10O29 hollow 

nanofibers 10 ~123 at 500th cycles [S29]

porous Ti2Nb10O29 
nanospheres 10 ~141 at 1000th cycles [S30]

porous TiNb24O62 
nanospheres 10 ~183 at 500th cycles [S6]

TiNb6O17 5 ~171 at 100th cycles [S7]

FeNb11O27.9 10 ~135 at 200th cycles [S31]

GeNb18O47 nanofibers 2 ~162 at 200th cycles [S14]

VNb9O25 nanoribbons 3 ~132 at 500th cycles [S16]

W9Nb8O47 nanofibers 5 ~113 at 1000th cycles [S17]

GaNb11O29 nanowebs 10 ~153 at 1000th cycles [S12]
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Table S5. Comparisons of Li+ diffusion coefficients of MoNb12O33 with other 

intercalating hosts tested by the same CV method.

sample
Li+ diffusion coefficient 

for Li+ insertion (cm2 s–1)

Li+ diffusion coefficient 

for Li+ extraction (cm2 s–1)
reference

MoNb12O33 4.0×10–14 8.6×10–14 this work

TiNb2O7 8.0×10–16 9.5×10–16 [S32]

Ti2Nb10O29 5.4×10–15 6.5×10–15 [S27]

TiNb6O17 4.3×10–14 5.5×10–14 [S7]
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