Supporting Information

Rapid Oxygen Diffusive Lithium-Oxygen Battery using Restackinginhibited, Free-Standing Graphene Cathode Film

In-Sun Jung,^{‡a,c} Hyuk Jae Kwon,^{‡a} Mokwon Kim,^a Doyoung Kim,^{b,c} Junghwa Kim,^a Hyangsook Lee,^a Dongjin Yun,^a Sunjung Byun,^a Daeun Yu,^a Hyunju An,^a Jaeduck Jang,^a Dongmin Im,^a Hyoyoung Lee^{b,c*}

^a Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd, 130 Samsung-ro, Yeongtong-gu, Suwonsi, Gyeonggi-do, 16678, Republic of Korea.

^b Center for Integrated Nanostructure Physics (CINAP), Institute of Basic Science (IBS), 2066, Seoburo, Jangan-Gu, Suwon, Gyeonggi-Do 16419, Republic of Korea

^c Department of Chemistry and Department of Energy Science, Sungkyunkwan University, Suwon-si, Gyeonggi-do, 16419, Republic of Korea

Figure S1. (a) The ¹³C CP-MAS NMR and (b) ¹H MAS NMR of graphene oxide (GO, black) and nonstacked graphene oxide (NS-GO, red)

	Area	Center	Width	Height	%Area of C=C peak (SP2)	C-O peak Ratio (SP3)
GO	4275500000	14.3	75.4	36078000		
	7275200000	59.4	23.3	199130000	71	0.67
peaks	27828000000	124.0	59.5	297540000		
NS-GO	736560000	1.7	21.9	21459000		
	14445000000	70.4	85.5	107600000	77	0.29
peaks	49947000000	126.6	84.6	375680000		

Figure S2. The FT-IR spectra of graphene oxide (GO) and non-stacked graphene oxide (NS-GO)

Figure S3. The ¹³C CP-MAS NMR of (a) non-stacked reduced graphene oxide (NS-rGO) and (b) partially reduced non-stacked-GO (p*-NS-rGO)

Figure S4. The XPS results of (a) graphene oxide (GO), (b) non-stacked graphene oxide (NS-GO), (c) thermally reduced GO (T-rGO), (d) non-stacked reduced graphene oxide (NS-rGO)

3.3

7.0

0.5

0.1

0.1

2.0

0.4

0.2

(c) NS-rGO

(d) T-rGO

95.2

90.7

0.5

0.0

	,			,
		1		۱
				,
٠			,	

Figure S5. The Raman spectra of graphene oxide (GO) and non-stacked graphene oxide (NS-

GO)

(a) Raman spectra of Graphene oxide derivatives (I_D/I_G)

b) 2D bands of Graphene oxide derivatives

No.	D		G			2D	
	Хс	ID	Хс	I_G	ID/IG	Хс	I_{2D}
GO	1352.6	0.82408	1595.5	0.84706	0.97	2699.4	0.077
P-NSrGO	1360.2	0.74267	1597.9	0.81399	0.91	2680.2	0.070
NSrGO	1356.1	0.96282	1598.3	0.89801	1.07	2717.4	0.128

Figure S6. The ⁷Li MAS NMR spectra of the carbon (Printex) film (a) carbon:electrolyte=1:4, (b) carbon:electrolyte=1:8, (c) carbon:electrolyte=1:10 (d) NS-rGO:electrolyte=1:10, (e) the comparision results of peak width at the ⁷Li MAS NMR spectra; The ⁷Li MAS NMR spectra were obtained after soaking in electrolyte at a spinning rate of 13k, in which the graphene derivatives contain an ionic liquid electrolyte, (diethylmethyl(2-methoxyethyl)ammonium bis(trifluoromethane) sulfonamide, DEMA-TFSi) containing 1.0 M bis(trifluoromethane) sulfonimide lithium salt (LiTFSi).

Figure S7. Cell structure (Li/interlayer/cathode/GDL/SUS) of a Li-air battery (Li-O₂ MIT cell) including the freestanding film, roll-pressed cathode; graphene derivatives/DEMA-LiTFSi_PTFE (1:5:0.2), cathode area (1.13cm²), weight (3.9 mg/cm²), graphene derivatives loading (0.64 mg/cm²) at 60°C

Figure S8. Discharge and charge profiles of non-stacked reduced GO (NS-rGO) for the cathode material up to 10 cycles under full discharge capacity condition. The test conditions included a cut-off voltage of (1.8 < V < 4.5), current density: 0.24mA/cm² under 1 atm oxygen gas and room temperature, discharge: CC mode, charge: CC-CV mode.

Figure S9. The cross-section SEM images of the NS-rGO powder and magnification ranging from (a)1,000X (b) 10,000X (c) 50,000X to (d) 100,000X

The synthetic process of non-stacked graphene oxide (NS-GO) and non-stacked reduced graphene oxide (NS-rGO):

Graphene oxide (GO) was prepared by the modified Hummer's method from natural graphite using sulfuric acid, potassium permanganate, and sodium nitrate. We followed our previous paper¹ to fabricate NS-GO powder and NS-rGO powder. Briefly, for NS-GO, the GO (1 g) was dispersed in ethanol (1 L) with homogenization (1 hour) and ultra-sonication (1 hour). After pouring cold hexane in dispersed GO solution, the co-solvent system GO solution was filtered by vacuum filtration with continuously stirring and adding pure hexane, and then the solvent was completely evaporated by rotary evaporator. For NS-rGO, the NS-GO (500 mg) on an alumina boat in quartz furnace was treated to form NS-rGO by thermal reduction at 1,000°C for 1 hour (1.5°C/min) under 3% hydrogen/nitrogen atmosphere or under vacuum condition. The total yield was about 40%. For comparison, p*-NS-rGO sample are performed at about 300°C for 1 hour (p*-NS-rGO).

^{1.} Y. Yoon, K. Lee, C. Baik , H. Yoo , M. Min , Y. Park, S. M. Lee, H. Lee, S. M. Lee , H. Lee, Adv. Mater., 2013, 25, 4437–4444

Table S1. Surface area and pore characterizations of the non-stacked reduced GO (powder) usingBET method.

Samples	BET Surface area (m²/g)	Pore volume (cm ³ /g)	Pore diameter (nm)
Ns-rGO	3414	25.51	29.89
p*-NS-rGO	1206	6.13	20.33
NS-GO	325	0.7	8.6

Table S2. Surface area and pore characterizations of the non-stacked reduced GO (film) using BET

method.

Samples	BET Surface area (m²/g)	Pore volume (cm ³ /g)	Pore diameter (nm)
Ns-rGO	164	1.04	25.3
T-rGO	107	0.24	8.96
C-rGO	103	0.23	9.06

Table S3. Discharge capacities of graphene oxides for the Li-air battery

Samples	NS-GO	p*-NS-rGO	NS-rGO	T-rGO	C-rGO
Discharge capacity [mAh/g]	150	250	3320	600	470

Samples	Weight (mg/cm²)	Thickness (um)	Capacity (mAh)	Specific capacity (mAh/g)
GDL-35BA (carbon paper)	4.3	200	1.52	174
NSrGO	0.61	7	1.62	314

Table S4. Dimensions and capacities of gas-diffusion layers (a) carbon paper, (b) NS-rGO

* Cathode layer: CM250 (MWCNT)