Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

SUPPORTING INFORMATION

for

Local Li-ion conductivity changes within Li₇La₃Zr₂O₁₂ solid electrolytes and their relation to three dimensional variations of the bulk composition

Smetaczek Stefan^{1,*}, Wachter-Welzl Andreas¹, Wagner Reinhard², Rettenwander Daniel^{3,4}, Amthauer Georg², Andrejs Lukas⁵, Taibl Stefanie¹, Limbeck Andreas¹, Fleig Juergen¹

¹Institute of Chemical Technologies and Analytics, Technische Universität Wien, Austria

²Department of Chemistry and Physics of Materials, University of Salzburg, Austria

³Insititue for Chemistry and Technology of Materials, Graz University of Technology, Austria

⁴Christian Doppler Laboratory for Lithium Batteries, Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria ⁵Austrian Institute of Technology, Vienna, Austria

*Corresponding author: <a>Stefan.Smetaczek@tuwien.ac.at

CONTENT:

- 1. Parameters LA-ICP-OES measurement
- 2. LA-ICP-OES images:
 - 2a. Sample A: Li distribution in 50 µm and 100µm depth
 - 2b. Sample B and C: Li distribution in 5 µm depth
 - 2c. Sample D: Al and Li distribution in 5 μm and 100 μm depth

Table S1 Parameters for the LA-ICP-OES measurement

Laser ablation system	ESI NWR213
Average fluence	
Pre-Ablation	$2.50 \mathrm{J}\mathrm{cm}^{-2}$
Imaging	$4.25 \mathrm{J}\mathrm{cm}^{-2}$
Laser diameter	
Pre-Ablation	250 μm
Imaging	100 µm
Scan speed	
Pre-Ablation	250 μm s ⁻¹
Imaging	100 μm s ⁻¹
Repetition rate	20 Hz
Carrier gas flow (He)	0.6 l min ⁻¹
Make-up gas flow (Ar)	0.81 min ⁻¹
ICP-OES instrumentation	Thermo iCAP 6500 RAD
RF power	1200 W
Radial observation height	12 mm
Plasma gas flow	12 l min ⁻¹
Auxiliary gas flow	0.5 l min ⁻¹
Integration time	1 s
Analytical wavelengths	
Al	309.271 nm 396.152 nm
La	261.034 nm 419.655 nm
Li	610.362 nm 670.784 nm
Zr	257.139 nm 274.256 nm

Fig. S1 LA-ICP-OES distribution images of sample A, illustrating the amount of lithium in (a) 50 µm and (b) 100 µm sample depth.

Fig. S2 LA-ICP-OES images of (a) sample B and (b) sample C, illustrating the amount of Li in 5 μm depth.

Fig. S3 LA-ICP-OES images of sample D, illustrating the amount of Li (a,c) and AI (b,d) in 5 µm and 100 µm depth.