Supporting Information

An efficient multi-doping strategy to enhance Li-ion conductivity in

garnet-type solid electrolyte Li7La3Zr2O12

Yedukondalu Meesala,^a Yu-Kai Liao,^b Anirudha Jena,^{ac} Nai-Hsuan Yang,^a Wei Kong Pang,^d Shu-Fen Hu,^{*b} Ho Chang,^{*c} Chia-Erh Liu,^e Shih-Chieh Liao,^e Jin-Ming Chen,^e Xiangxin Guo^{*f} and Ru-Shi Liu^{*ab}

^aDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan

^bDepartment of Physics, National Taiwan Normal University, Taipei 116, Taiwan

^cDepartment of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan

^{*d}</sup>Institute for Superconducting & Electronic Materials, University of Wollongong, NSW* 2522, Australia</sup>

^eMaterial and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan

^fCollege of Physics, Qingdao University, Qingdao 266071, China

AUTHOR INFORMATION

*Corresponding authors

E-mails: rsliu@ntu.edu.tw (R. S. Liu)

f10381@ntut.edu.tw (H. Chang)

sfhu.hu@gmail.com (S. F. Hu)

xxguo@qdu.edu.cn (X. Guo)

Garnet	GOF	R_{wp}	atom	site	Occupancy	X	у	Z	Uiso/(Å)
LLZO	1.77	10.36%	Li	24d	0.32*	0.375	0	0.25	0.021(1)
			Li	96h	0.36*	0.094(2)	0.685(2)	0.585(3)	0.021(1)
			Al	24d	0.06	3/8	0	1/4	0.01
			La	24c	1	0.125	0	0.25	0.0108(6)
			Zr	16a	1	0	0	0	0.00075(7)
			0	96h	1	0.9724(3)	0.0551(6)	0.1487(4)	0.0107(4)
LLZTO	2.34	8.86%	Li	24d	0.52*	0.375	0	0.25	0.14(4)
			Li	96h	0.33*	0.697(5)	0.599(5)	0.079(5)	0.09(4)
			La	24c	1	0.125	0	0.25	0.0014(5)
			Zr	16a	0.875**	0	0	0	0.0035(3)
			Та	16a	0.125**	0	0	0	0.0015(3)
			0	96h	1	0.9724(7)	0.0651(7)	0.1426(7)	0.0107(4)
LLBZTO	2.20	9.92%	Li	24d	0.65*	0.375	0	0.25	0.20(7)
			Li	96h	0.33*	0.651(4)	0.599(4)	0.047(4)	0.20(5)
			La	24c	0.9833**	0.125	0	0.25	0.0014(5)
			Ва	24c	0.0167**	0.125	0	0.25	0.0014(5)
			Zr	16a	0.875**	0	0	0	0.0035(3)
			Та	16a	0.125**	0	0	0	0.0015(3)
			0	96h	1	0.9724(7)	0.05919(7)	0.13992(7)	0.0107(4)
LGLBZTO	2.37	10.82%	Li	24d	0.77*	0.375	0	0.25	0.20(5)
			Li	96h	0.33*	0.7342(4)	0.5961(4)	0.055(4)	0.18(5)
			Ga	24d	0.0598(5)	0.375	0	0.25	0.20(7)
			La	24c	0.9833**	0.125	0	0.25	0.0014(5)
			Ва	24c	0.0167**	0.125	0	0.25	0.0014(5)
			Zr	16a	0.875**	0	0	0	0.0035(3)
			Та	16a	0.125**	0	0	0	0.0015(3)
			0	96h	1	0.9731(9)	0.05726(9)	0.13875(9)	0.006(3)

Table S1. XRD refined atomic occupation factors, fractional coordinates, and isotropic thermal factors of the undoped LLZO, mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO.

* From neutron data **fixed

Table S2. The d(0.1), d(0.5), and d(0.9) values of undoped LLZO mono-doped LLZTO, dual-doped LLBZTO, and ternary-doped LGLBZTO.

Garnet	d(0.1)	d(0.5)	d(0.9)	*Span
LLZO	2.217 μm	2.734 μm	5.007 μm	1.02 μm
LLZTO	0.506 μm	3.493 μm	6.102 μm	1.60 µm
LLBZTO	0.538 μm	3.668 μm	7.926 μm	2.01 µm
LGLBZTO	0.553 μm	3.68 μm	8.138 μm	2.06 µm

*Span = $\frac{D_{v0.9} - D_{v0.1}}{D_{v0.5}}$

Fig. S1 Rietveld analysis of Synchrotron X-ray powder diffraction pattern of the undoped LLZO; observed (crosses), calculated, and difference profiles; vertical bars correspond to the calculated Bragg reflections for cubic garnet.

Fig. S2 Rietveld analysis of Synchrotron X-ray powder diffraction pattern for the monodoped LLZTO; observed (crosses), calculated, and difference profiles; vertical bars correspond to the calculated Bragg reflections for cubic garnet.

Fig. S3 Rietveld analysis of Synchrotron X-ray powder diffraction pattern for the dualdoped LLBZTO; observed (crosses), calculated, and difference profiles; vertical bars correspond to the calculated Bragg reflections for cubic garnet.

Fig. S4 Rietveld analysis of Synchrotron X-ray powder diffraction pattern for the ternarydoped LGLBZTO; observed (crosses), calculated, and difference profiles; vertical bars correspond to the calculated Bragg reflections for cubic garnet.

Fig. S5 FE-SEM images of the (a) undoped LLZO, (b) mono-doped LLZTO, (c) dualdoped LLBZTO, and (d) ternary-doped LGLBZTO (e) Optical photographs of LGLBZTO with 0.5mm thickness.

Fig. 6 Impedance spectra of the symmetrical cell Li|LGLBZTO|Li measured at 27 and 60 °C.

Fig. 7 Impedance spectra of the symmetrical cell with the configuration of (a) Li|LLZO|LFP (b) Li|LLZTO|LFP (c) Li|LLBZTO|LFP and (d) Li|LGLBZTO|LFP recorded before and after 5th cycle at 60 °C.