Rational Design of Interlayer Expanded MoS₂-N/O doped Carbon Tubular Composite for Excellent Potassium-Ion Storage

Nan Zheng, Guangyu Jiang, Xiao Chen, Jiayi Mao, Yajun Zhou,

Yongsheng Li

Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Fig. S1 a) FESEM image and b) FETEM image of E-MoS $_2/NOC$ TC at low magnification.

Fig. S2 a) FESEM image, b) TEM image, and c) XRD patterns of MoO₃-EDA.

Fig. S3 FESEM images of a) $E-MoS_2$ NWs and b) MoS_2 NWs. TEM images of c) $E-MoS_2$ NWs and d) MoS_2 NWs. HRTEM images of e) $E-MoS_2$ NWs and f) MoS_2 NWs.

Fig. S4 TEM images of a) MoS₂ NWs and b) E-MoS₂/NOC TC after 100 cycles at 1000 mA g^{-1} .

Fig. S5 FESEM images of a) E-MoS₂/PC TC. TEM images of b-c) E-MoS₂/PC TC. HRTEM images of d) E-MoS₂/PC TC.

Fig S6 XPS survey scan of MoS₂ NWs.

Fig. S7 High-resolution XPS spectra of a) Mo 3d, b) S 2p, c) C 1s, and d) O1s in $MoS_2 NWs$.

Fig. S8 a) CV curves of E-MoS₂/NOC TC electrode at at different scan rates.

Fig. S9 a) CV curves of MoS_2 NWs electrode at at different scan rates; b) CV curves of MoS_2 NWs electrode for the first five cycles at a scan rate of 0.1 mV⁻¹.

Fig. S10 Charge/discharge curves of MoS_2 NWs electrode for the first, second, forth, fifth and the hundredth cycles at a current density of 250 mA g⁻¹.

Fig. S11 (a) Nyquist plots and fitting line of the $E-MoS_2/NOC TC$ and $MoS_2 NWs$ the fresh electrodes. (c) Equivalent circuit used for fitting the EIS data. (b) Fitted lines and

real part of impedance versus $\omega^{-1/2}$ for E-MoS₂/NOC TC and MoS₂ electrodes (Rs: the internal resistance of the coin-cell battery; Zw: the Warburg impedance; Rct: the charge-transfer resistance; CPE1: the constant phase-angle element that involves double layer capacitance).

Fig. S12 a) TEM images of N/O-doped carbon skeleton prepared from E-MoS₂/NOC

TC via removing MoS_2 by chloroazotic acid washing; b) cyclic performance of N/Odoped carbon skeleton electrodes at a current density of 250 mA g⁻¹. N/O-doped C nanotubes still keep the overall structural stability of E-MoS₂/NOC TC, which shows that MoS_2 is perfectly coated by N/O-doped carbon.

Fig. S13 a) Energy profiles along the diffusion path in the selected interlayer distances of $1T-MoS_2/MoS_2$. b) Two representative configurations of one K confined inbetween 2H-MoS_2/MoS_2 bilayer. A: Mo^{top}-S^{top}, B: Mo^{hollow}-Mo^{hollow}. Configuration A is the stable when the interlayer distance is 9.7 Å, while configuration B is stable when the interlayer distance is 9.7 Å, while configurations of one K confined in-between MoS₂/C bilayer. A: Mo^{top}-graphene^{hollow}, B: Mo^{hollow}-C^{top}, C: Mo^{hollow}-graphene^{hollow}, D: Mo^{top}-C^{top}. Configuration A is the most stable one for the considered interlayer distances (6.2 and 9.2 Å). d) Several representative configurations of one K confined in-between 1T-MoS₂/MoS₂ bilayer. A: Mo^{top}-Mo^{hollow}, B: Mo^{hollow}-S^{top}, C: S^{top}-Mo^{top}. Each configuration is considered by putting K atom close to the top MoS₂ layer or far away from top MoS₂ layer. When the interlayer distance is 6.2 Å, configuration A is the most stable one, where the Mo^{top}-K distance is 3.2 Å. When the interlayer distance is 9.7 Å, configuration A is the most stable one, where the Mo^{top}-K distance is 4.3 Å.

Table S1. Mass percents of MoS₂ NWs and E-MoS₂/NOC TC with EA measurements

Material	C (wt %)	N (wt %)	S (wt %)	O (wt %)
MoS ₂ NWs	2.0	0.6	35.0	4.1
E-MoS ₂ /NOC	10.6	1.7	25.7	2.9
TC				

Table S2. Structural Parameters for the MoS_2 NWs and E-MoS₂/NOC TC with N₂ sorption analysis.

Sample	S_{BET} (m ² /g)	V (cm ³ /g)	d (nm)
MoS ₂ NWs	15.9	0.09	2.6
E-MoS ₂ /NOC TC	53.9	0.26	2.6 & 37.8

Table S3. Summary of EIS fitting results of $E-MoS_2/NOC$ TC and MoS_2 NWs fresh electrodes.

Sample	$\operatorname{Rs}(\Omega)$	Rct (Ω)	σ
MoS ₂ NWs-Initial	3.2	1280	88.1
E-MoS ₂ /NOC TC - Initial	2.8	469	53.8

Sample	Current	Capacity:	Cycle	Reference
	density:	mAh/g	number	
	mA/g			
	250	247.8	100	This work
$E-MOS_2/NOC TC$	1000	231.5	100	
Graphite	139.5	100	50	1
PC graphite	10	150	175	2
Hard Carbon	27.9	216	100	3
MoS_2	20	63.8	200	4
MoSe ₂ /C	200	322	100	5
Alkalized	200	42	500	6
Ti ₃ C ₂ MXene	200			0
Mesoporous	1000	159.8	200	7
Carbon	1000	107.0	200	,
$K_2 Ti_8 O_{17}$	20	111	50	8
Sn/C	25	105	30	9
MoSe ₂ /N-Doped C	1000	180	100	10
SnSb-graphene-	100	275	100	11
carbon	100	215	100	11
$K_2V_3O_8$	100	84	180	12

Table S4. Comparison of the potassium storage cycling performance of the recent anode materials.

Reference

- 1 Z. Jian, W. Luo and X. Ji, J. Am. Chem. Soc., 2015, 137, 11566-11569.
- 2 W. Luo, J. Wan, B. Ozdemir, W. Bao, Y. Chen, J. Dai, H. Lin, Y. Xu, F. Gu, V. Barone and L. Hu, *Nano Lett.*, 2015, **15**, 7671-7677.
- 3 Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, *Adv. Energy Mater.*, 2016, 6, 1501874.
- 4 X. Ren, Q. Zhao, W. D. McCulloch and Y. Wu, *Nano Res.*, 2017, **10**, 1313-1321.
- 5 W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng, J. Zhou, K. Wang, C. Yang, Y. Yang and S. Guo, *Adv. Mater.*, 2018, **30**, 1801812.
- 6 P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, W. Sen, C. Sun, J. Qin, X. Shi and X. Bao, *Nano Energy*, 2017, 40, 1-8.
- 7 W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang and S. Guo, *Adv. Energy Mater.*, 2018, 8, 1701648.
- 8 J. Han, M. Xu, Y. Niu, G. N. Li, M. Wang, Y. Zhang, M. Jia and C. M. Li, *Chem. Commun.*, 2016, **52**, 11274-11276.
- 9 I. Sultana, T. Ramireddy, M. M. Rahman, Y. Chen and A. M. Glushenkov, *Chem. Commun.*, 2016, **52**, 9279-9282.

- 10 J. Ge, L. Fan, J. Wang, Q. Zhang, Z. Liu, E. Zhang, Q. Liu, X. Yu and B. Lu, *Adv. Energy Mater.*, 2018, **8**, 1801477.
- 11 Z. Huang, Z. Chen, S. Ding, C. Chen and M. Zhang, *Solid State Ionics*, 2018, **324**, 267-275.
- 12 M. Lu, K.-f. Wang, H.-d. Ke, Q. Hu, Z.-h. Liu and H.-r. Wu, *Mater. Lett.*, 2018, 232, 224-227.