Construction of self-supported leaf thorn-like nickel-cobalt bimetal phosphides

as an efficient bifunctional electrocatalysts for urea electrolysis

Linna Sha, Jinling Yin, Ke Ye*, Gang Wang, Kai Zhu, Kui Cheng, Jun Yan, Guiling

Wang, Dianxue Cao*

Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China

^{*}Corresponding authors.

E-mail addresses: yeke@hrbeu.edu.cn (K. Ye); caodianxue@hrbeu.edu.cn (D. Cao)

Figure S1. EDS spectra of (a) $Ni_{0.22}Co_{0.78}P/CC$, (b) $Ni_{0.31}Co_{0.69}P/CC$ and (c) $Ni_{0.61}Co_{0.39}P/CC$.

Figure S2. (a) Low-magnification and (b) high-magnification SEM images of the NiCo-OH/CC precursor.

Figure S3. XRD patterns of the (a) NiCo-OH/CC precursor and (b) NiCo₂O₄/CC.

Figure S4. XRD patterns of the as-prepared $Ni_{1-x}Co_xP/CC$ samples: $Ni_{0.22}Co_{0.78}P/CC$, $Ni_{0.31}Co_{0.69}P/CC$ and $Ni_{0.61}Co_{0.39}P/CC$.

Figure S5. SEM images of (a) $Ni_{0.22}Co_{0.78}P/CC$, (b) $Ni_{0.31}Co_{0.69}P/CC$ and (c) $Ni_{0.61}Co_{0.39}P/CC$.

Figure S6. (a) LSV curves and (b) Tafel plots of the $Ni_{0.61}Co_{0.39}P/CC$, $Ni_{0.31}Co_{0.69}P/CC$, $Ni_{0.22}Co_{0.78}P/CC$ and NiCoP/CC catalysts for UOR in 1 M KOH and 0.5 M urea.

Figure S6a shows the LSV polarization curves of all bimetallic phosphide electrodes with different Ni/Co ratios in 1.0 M KOH and 0.5 M urea. It is clearly noted that the UOR activity decreases with the decrease of the Co doping concentration. Specifically, NiCoP/CC electrode exhibited superior UOR activity with a lowest potential of 1.30 V at the current density of 10 mA cm⁻², which is much smaller than those of Ni_{0.22}Co_{0.78}P/CC (1.33 V), Ni_{0.31}Co_{0.69}P/CC (1.36 V) and Ni_{0.61}Co_{0.39}P/CC (1.38 V) electrodes. Meanwhile, the smaller Tafel slope of NiCoP/CC (49 mV dec⁻¹)

indicates its faster UOR kinetics than other samples (Figure S6b).

Figure S7. Nyquist plots of NiCoP/CC, NiCo₂O₄/CC, NiCo-OH/CC and bare CC catalysts for UOR process at 1.32 V vs. RHE.

Figure S8. Cyclic voltammetry curves for (a) CC, (b) NiCo-OH/CC, (c) NiCo₂O₄/CC and (d) NiCoP/CC electrodes in the region of 0.82-0.92 V vs. RHE with different scanning rates upon UOR catalysis.

Figure S9. (a) LSV curves and (b) Tafel plots of the $Ni_{0.61}Co_{0.39}P/CC$, $Ni_{0.31}Co_{0.69}P/CC$, $Ni_{0.22}Co_{0.78}P/CC$ and NiCoP/CC catalysts for HER in 1 M KOH solution.

Figure S10. Nyquist plots of NiCoP/CC, NiCo₂O₄/CC, NiCo-OH/CC and bare CC catalysts at an overpotential of 300 mV toward HER.

Figure S11. Cyclic voltammetry curves for (a) CC, (b) NiCo-OH/CC, (c) NiCo₂O₄/CC and (d) NiCoP/CC electrodes in the region of 0.04-0.14 V vs. RHE with different scanning rates upon HER catalysis.

Figure S12. Polarization curves of NiCoP/CC in 1.0 M KOH with and without 0.5 M urea at a scan rate of 2 mV s⁻¹ for HER.

Figure S13. SEM images of NiCoP/CC after (a) HER and (b) UOR stability test.

Table S1. Comparison of the UOR performance of NiCoP/CC catalyst with otherreported UOR catalysts.

Catalysts	Urea concentrate (M)	j (mA cm ⁻²)	Voltage (V vs RHE)	Reference s
Ni(OH) ₂	0.33	10	1.42	1
Fe _{11.1%} -Ni ₃ S ₂ /Ni	0.33	10	1.35	2
NF/NiMoO	0.5	10	1.37	3
Ni ₃ N/CC	0.33	10	1.35	4
Ni(OH) ₂ -grephene	0.33	10	1.43	5
MnO ₂ /MnCo ₂ O ₄ /Ni	0.5	10	1.33	6
Ni ₂ P/CFC	0.33	10	1.34	7
NF/MnO ₂	0.5	10	1.33	8
NiCo ₂ S ₄ /CC	0.33	10	1.35	9
Ni ₃ Se ₄	0.5	10	1.38	10
NiCoP/CC	0.5	10	1.30	This work

Catalysts	j (mA cm ⁻²)	η _j (mV)	Tafel slope (mV dec ⁻¹)	References
NiFeS/Ni	10	180	53	11
MoP	10	52	40	12
NiCo ₂ S ₄ /Ni	10	210	58.9	13
FePo ₄	10	123	104.5	14
Ni(OH) ₂ /Ni ₃ S ₂	20	211	129	15
CC/CoP	10	110	129	16
Ni ₃ S ₂	10	60.8	67.5	17
NiMoP	10	135	137.5	18
Ni ₁₂ P ₅	10	107	63	19
MoS ₂ -Ni ₃ S ₂ /NF	10	110	83	20
NiSe/NF	10	96	120	21
NiCoP/CC	10	107	79	This work

Table S2. Comparison of the HER performance of NiCoP/CC with other reported non

 precious electrocatalysts in 1M KOH electrolyte.

References

- [1] X. Zhu, X. Dou, J. Dai, X. An, Y. Guo, L. Zhang, S. Tao, J. Zhao, W. Chu, X. C.
- Zeng, C. Wu and Y. Xie, Angew. Chem. Int. Ed., 2016, 55, 12465-12469.
- [2] W. X. Zhu, Z. H. Yue, W. T. Zhang, N. Hu, Z. T. Luo, M. R. Ren, Z. J. Xu, Z. Y.
- Wei, Y. R. Suo and J. L. Wang, J. Mater. Chem. A, 2018, 6, 4346-4353.
- [3] Z. Y. Yu, C. C. Lang, M. R. Gao, Y. Chen, Q. Q. Fu, Y. Duan and S. H. Yu, *Energ. Environ. Sci.*, 2018, **11**, 1890-1897.
- [4] Q. Liu, L. S. Xie, F. L. Qu, Z. Liu, G. Du, M. A. Abdullah and X. P. Sun, *Inorg. Chem. Front.*, 2017, 4, 1120-1124.
- [5] D. Wang, W. Yan, S. H. Vijapur and G. G. Botte, *Electrochem. Acta*, 2013, **89**, 732-736.
- [6] C. L. Xiao, S. N. Li, X. Y. Zhang and D. R. MacFarlane, *J. Mater. Chem. A*, 2017,
 5, 7825-7832.
- [7] X. Zhang, Y. Y. Liu, Q. Z. Xiong, G. Q. Liu, C. J. Zhao, G. Z. Wang, Y. X. Zhang,
 H. M. Zhang and H. J. Zhao, *Electrochim. Acta*, 2017, 254, 44-49.
- [8] S. Chen, J. Duan, A. Vasileff and S. Z. Qiao, Angew. Chem. Int. Ed., 2016, 55, 3804-3808.
- [9] W. X. Zhu, M. R. Ren, N. Hu, W. T. Zhang, Z. T. Luo, R. Wang, J. Wang, L. J.
- Huang, Y. R. Suo and J. L. Wang, ACS Sustainable Chem. Eng., 2018, 6, 5011-5020.
- [10] J. Y. Zhang, X. N. Tian, T. He, S. Zaman, M. Miao, Y. Yan, K. Qi, Z. H. Dong,
- H. F. Liu and B. Xia, J. Mater. Chem. A, 2018, 6, 15653-15658.
- [11] P. Ganesan, A. Sivanantham and S. Shanmugam, J. Mater. Chem. A, 2016, 4, 16394-16402.

[12] X. Zhang, F. Zhou, W. Y. Pan, Y. Y. Liang, and R. H. Wang, *Adv. Funct. Mater.*, 28, 1804600.

- [13] A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, 26, 4661-4672.
- [14] L. Yang, Z. L. Guo, J. Huang, Y. N. Xi, R. J. Gao, G. Su, W. Wang, L. X. Cao, and B. H. Dong, *Adv. Mater.*, 2017, **29**, 1704574.
- [15] X. Q. Du, Z. Yang, Y. Li, Y. Q. Gong and M. Zhao, J. Mater. Chem. A, 2018, 6, 6938-6946.
- [16] J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- [17] C. Yang, M. Y. Gao, Q. B. Zhang, J. R. Zeng, X. T. Li and A. P. Abbott, Nano Energy, 2017, 36, 85-94.
- [18] H. Xu, J. J. Wei, K. Zhang, Y. Shiraishi, and Y. K. Du, ACS Appl. Mater. Interfaces, 2018, 10, 29647-29655.
- [19] Z. P. Huang, Z. B. Chen, Z. Z. Chen, C. C. Lv, H. Meng, and C. Zhang, ACS Nano,
 2014, 8, 8121-8129.
- [20] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang and X.Feng, *Angew. Chem. Int. Ed.*, 2016, 55, 6702-6707.
- [21] C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing, and X. P. Sun, *Angew. Chem. Int. Ed.*, 2015, 54, 9351-9355.