Electronic Supplementary Information

Perovskite KNi_{0.1}Co_{0.9}F₃ as a pseudocapacitive conversion

anode for high-performance nonaqueous Li-ion capacitors

and dual-ion batteries

Qilei Xu, **Rui Ding**,^{*} Wei Shi, Danfeng Ying, Yongfa Huang, Tong Yan, Ping Gao,

Xiujuan Sun and Enhui Liu

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education,

College of Chemistry, Xiangtan University, Hunan 411105, P.R. China

^{*} E-mails: <u>drm8122@163.com;</u> <u>drm8122@xtu.edu.cn</u> (R. Ding);

Tel: +86 731 58292202; Fax: +86 731 58292251

Table of contents						
Fig. S1	A picture of KNi _x Co _{1-x} F ₃ samples (Ni/Co=1-0~0-1).	P 4				
Fig. S2	The crystal structures of perovslite KMF ₃ and detailed crystalline parameters for KNiF ₃ and KCoF ₃ .					
Fig. S3	SEM-TEM images of KNCF(1-6) Samples.					
Fig. S4	Element mapping of KNCF(1-6) samples derived from TEM images.					
Fig. S5	XPS spectra of KNCF (1-6) electrode in pristine, charged-3 V and discharged-0.01 V states of the 3rd CV (0.3 mV s ⁻¹) cycle with A electrolytes.					
Fig. S6	TEM and SAED patterns for the KNCF(1-6) electrode in charged-3 V and discharged-0.01 V states of the 3rd CV (0.3 mV s ⁻¹) cycle with A	D.7				
	electrolytes; Crystalline structure information of Ni, Co, NiF2, CoF2, KF, LiF and Li2CO3 phases.					
Fig. S7	Ex-situ XRD patterns of KNCF (1-6) electrode in pristine, the 1st discharge (Dis)/charge (Ch) (0.1 A g ⁻¹) processes with A electrolytes					
Fig. S8	Schematics of possible reaction mechanisms for KMF ₃ (M=Ni, Co) electrode during the discharging/charging processes under the first two cycles.	Р9				
Fig. S9	CV plots of the first three cycles of KNCF(1-0~0-1) electrodes at 0.3 mV s ⁻¹ with A electrolytes.					
Fig. S10	GCD curves-the first five cycles of KNCF(1-0~0-1) electrodes at 0.1 A g ⁻¹ with A electrolytes.	P 11				
Fig. S11	GCD curves of KNCF (1-0~0-1) electrodes at 0.1~3.2 A g ⁻¹ with A electrolytes.					
Fig. S12	Rate performance and Coulombic efficiency of KNCF(1-0~0-1) electrodes at 0.1~3.2~0.1 A g ⁻¹ with A electrolytes.	P 13				
Fig. S13	Cycling stability and Coulombic efficiency of KNCF(1-0~0-1) electrodes at 1 A g ⁻¹ for 1000 cycles with A electrolytes.	P 14				
Fig. S14	Performance of AC electrode with A electrolytes.	P 15				
Fig. S15	CV windows of KNCF//AC LICs (Ni:Co=1-0~0-1) at 50 mV s ⁻¹ with A electrolytes.	P 16				
Fig. S16	CV plots of KNCF//AC LICs (Ni:Co=1-0~0-1) at 10~160 mV s ⁻¹ with A electrolytes.	P 17				
Fig. S17	GCD curves of KNCF//AC LICs (Ni:Co=1-0~0-1) at 0.5~8 A g ⁻¹ with A electrolytes.					
Fig. S18	Cycling stability and Coulombic efficiency of KNCF//AC LICs (Ni:Co=1-0~0-1) at 1 A g ⁻¹ with A electrolytes.					
Fig. S19	GCD curves of KNCF(2-3) electrode at the precharged current densities of 0.1-2 A g ⁻¹ with A electrolytes.					
Fig. S20	CV windows of KNCF(2-3)//AC LICs at 50 mV s ⁻¹ with the anode precharged at 0.1-2 A g ⁻¹ and A electrolytes.					
Fig. S21	GCD curves of KNCF (2-3)//AC LICs at 0.5-16 A g ⁻¹ with the anode precharged at 0.1-2 A g ⁻¹ and A electrolytes.	P 22				
Fig. S22	Cycling stability and Coulombic efficiency of KNCF(2-3)//AC LICs at 5 A g ⁻¹ with the anode precharged at 0.1-2 A g ⁻¹ and A electrolytes.	P 23				
Fig. S23	CV windows of KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 30 mV s ⁻¹ with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 24				
Fig. S24	CV plots of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 10-160 mV s ⁻¹ with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 25				
Fig. S25	GCD curves of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 0.5-16 A g ⁻¹ with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 26				
Fig. S26	Cycling and Coulombic behavior of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 5 A g ⁻¹ with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.					
Fig. 827	LSV plots of AC electrode and the three-electrode potential monitor for KNCF(1-6)//AC LICs at 5 A g ⁻¹ with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.					
Fig. S28	CV plots at 10~160 mV s ⁻¹ , GCD curves at 0.5-16 A g ⁻¹ , Cycling stability and Coulombic efficiency at 5 A g ⁻¹ of 4.3 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 29				
Fig. 829	CV plots at 10~160 mV s ⁻¹ , GCD curves at 0.5-16 A g ⁻¹ , Cycling stability and Coulombic efficiency at 5 A g ⁻¹ of 4.5 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 30				
Fig. S30	CV plots at 10-160 mV s ⁻¹ , GCD curves at 0.5-16 A g ⁻¹ , Cycling stability and Coulombic efficiency at 5 A g ⁻¹ of 4.7 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 31				
Fig. S31	CV plots at 10 mV s ⁻¹ , GCD curves at 1 A g ⁻¹ , Ragone plots and Cycling behavior of KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) under the voltages of 4.3~4.7 V with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 32-3				
Fig. S32	GCD curves 0.1-3.2 A g ⁻¹ and CV plots at 0.3-160 mV s ⁻¹ of AC+LFP electrodes (1:1, 2:1, 4:1) with A electrolytes.	P 33				
Fig. 833	CV plots at 10~160 mV s ⁻¹ of KNCF(1-6)//AC+LFP (1:1) LICs under the voltages of 4~4.7 V with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	Р 34				
Fig. 834	GCD curves 0.5~16 A g ⁻¹ of KNCF(1-6)//AC+LFP (1:1) LICs under the voltages of 4~4.7 V with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	Р 35				
Fig. 835	CV plots at 10 mV s ⁻¹ , GCD curves at 1 A g ⁻¹ , Ragone plots and cycling behavior of KNCF(1-6)//AC+LFP (1:1) LICs under different working voltages of 4~4.7 V with the anode precharged at 0.5 A g ⁻¹ and A electrolytes.	P 36				
Fig. S36	Performance of LFP electrode with A electrolytes: CV plots at 0.3~20 mV s ⁻¹ (a), GCD curves at 0.1 A g ⁻¹ for the first five cycles (b) and different	P 37				
	current densities (c), rate performance (d, e) and cycling behavior (f). Performance of $KNCE(1-6)/(I = P I = with the anode procharged at 0.5 A griand A electrolytes; CV windows at 20 mV/grl(a), CV = plate at 10.160 mV/grl(b).$					
Fig. 837	s^{-1} (b), GCD curves at 0.5-16 A g^{-1} (c), Ragone behavior (d) and cycling behavior (e)	P 38				

Fig. S38	CV plots at 10~160 mV s ⁻¹ of KNCF(1-6)//AC LICs under the voltages of 4~4.7 V with both electrodes precharged at 0.5 A g ⁻¹ and A electrolytes.				
Fig. S39	GCD curves 0.5~16 A g ⁻¹ of KNCF(1-6)//AC LICs under the voltages of 4~4.7 V with both electodes precharged at 0.5 A g ⁻¹ and A electrolytes.				
Fig. S40	CV plots at 10 mV s ⁻¹ , GCD curves at 1 A g ⁻¹ , Ragone plots and cycling behavior of KNCF (1-6)//AC LICs under the voltages of 4~4.7 V with the anode precharged at 0.5 A g ⁻¹ .				
Fig. S41	CV plots at 0.3 mV s ⁻¹ for the first three cycles of graphite electrodes (918, SAG, KS6) with A and B (for 918) or B (for SAG, KS6) electrolytes.				
Fig. S42	GCD curves at 0.1 A g ⁻¹ for the first five cycles of graphite electrodes (918, SAG, KS6) with A and B (for 918) or B (for SAG, KS6) electrolytes.				
Fig. S43	GCD curves at 0.1~3.2 A g ⁻¹ of graphite electrodes (918, SAG, KS6) with A and B (for 918) or B (for SAG, KS6) electrolytes.				
Fig. S44	CV plots at 0.3 mV s ⁻¹ for the first three cycles of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.				
Fig. S45	GCD curves at 0.1 A g ⁻¹ for the first five cycles of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.				
Fig. S46	GCD curves at 0.1~3.2 A g ⁻¹ of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.				
Fig. S47	LSV plots of 918, 918+AC (1:1), 918+LFP (1:1), 918+AC+LFP (1:1:1), KS6 and SAG electrodes at 0.3 mV s ⁻¹ with B electrolytes.				
Fig. S48	CV plots at 0.3 mV s ⁻¹ , GCD curves at 0.1~3.2 A g ⁻¹ , rate performance and cycling behavior of KNCF(1-6) electrode with B electrolytes.				
Fig. S49	CV plots at 10~160 mV s ⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP and 918+AC+LFP) DIBs under 0.5- 5.2 V with the anode precharged at 0.5 A g ⁻¹ .				
Fig. S50	GCD curves at 0.5~8 A g ⁻¹ of KNCF(1-6)//(918, 918+AC, 918+LFP and 918+AC+LFP) DIBs under 0.5-5.2 V with the anode precharged at 0.5 A g ⁻¹ .				
Fig. S51	CV plots at 10~160 mV s ⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP and 918+AC+LFP) DIBs under 0.5-5.5 V with the anode precharged at 0.5 A g ⁻¹ .				
Fig. S52	GCD curves at 0.5~8 A g ⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP and 918+AC+LFP) DIBs under 0.5-5.5 V with the anode precharged at 0.5 A g ⁻¹ .	P53			
Eig 852	mance of KNCF(1-6)//SAG DIB under 1-5.2 V and 1-5.5 V with the anode precharged at 0.5 A g ⁻¹ and B electrolytes: CV windows at 10 mV				
F Ig. 555	s ⁻¹ (a), CV plots at 10~160 mV s ⁻¹ (b, c), GCD curves at 0.5-8 A g ⁻¹ (e, f), Ragone behavior (d, g) and cycling behavior (h, i).				
Fig S54	Performance of KNCF(1-6)//KS6 DIB under 1-5.2 V and 1-5.5 V with the anode precharged at 0.5 A g ⁻¹ and B electrolytes : CV windows at 10 mV				
r 1g. 554	CV plots at 10~160 mV s ⁻¹ (b, c), GCD curves at 0.5-8 A g ⁻¹ (e, f), Ragone behavior (d, g) and cycling behavior (h, i).				
Fig. S55	Performance of KNCF (1-6)//AC LIC with the anode precharged and A electrolytes under low temperature (-20 °C)				
Fig. S56	Performance of KNCF (1-6)//AC+LFP (1:1) LIC with the anode precharged and A electrolytes under low temperature (-20 °C)	Р 57			
Fig. S57	Performance of KNCF (1-6)//AC LIC with both the anode and cathode precharged and A electrolytes under low temperature (-20 °C)	P 58			
Fig. S58	Performance of KNCF (1-6)//918 DIB with the anode precharged and B electrolytes under low temperature (-20 °C)	Р 59			
Fig. S59	Performance of KNCF (1-6)//AC LIC with the anode precharged and A electrolytes under high temperature (40 °C)	P 60			
Fig. S60	Performance of KNCF (1-6)//AC+LFP (1:1) LIC with the anode precharged and A electrolytes under high temperature (40 °C)	P 61			
Fig. S61	Performance of KNCF (1-6)//AC LIC with both the anode and cathode precharged and A electrolytes under high temperature (40 °C)	P 62			
Fig. S62	Performance of KNCF (1-6)//918 DIB with the anode precharged and B electrolytes under high temperature (40 $^{\circ}$ C)	P 63			
Table S1	The element analysis of KNCF (Ni/Co=1:1) sample by EDS and ICP methods	P 64			
Table S2	Specific capacity of the AC and KNCF electrodes (Ni:Co=1:0~0:1) with A electrolytes.	P 65			
Table S3	The design of m_+/m ratios under different current densities for KNCF (Ni/Co=1:0~0:1)//AC LICs with A electrolytes.				
Table S4	The design of m_{\pm}/m_{\pm} ratios for KNCF (1-6)//AC+LFP (1:1) LICs, KNCF (1-6)//AC+LFP (0:1) LIB with A electrolytes.				
Table S5	Specific capacity of graphite electrodes with A (918) and B (918, KS6, SAG) electrolytes, 918+AC (1:1), 918+LFP (1:1), 918+AC+LFP (1:1:1), KNCF (1-6) electrodes with B electrolytes.	P 66			
Table S6	The design of m_+/m ratios for KNCF(1-6)//918, KNCF(1-6)//918+LFP (1:1), KNCF(1-6)//918+AC (1:1), KNCF(1-6)//918+AC+LFP (1:1:1) DIBs, KNCF(1-6)//SAG and KNCF(1-6)//KS6 with B electrolytes.	Р 67			
Table S7	Performance summary of the LICs and DIBs in the study under room temperature.				
Table S8	Performance summary of the LICs and DIBs in the study under high and low temperature.				
Table S9	A comparison of this work with some advanced LICs				
Table S10	A comparison of this work with some advanced DIBs				
Table S11	Chemicals, agents and materials used in this study				
Methods	Calculations for m_+/m , C_m , E_m , P_m .				
Refs.	References in the Tables S9-10	P 74-75			

Fig. S1 A picture of KNCF samples (Ni/Co=1-0~0-1).

Fig. S2 The crystal structures of perovslite KMF₃ and detailed crystalline parameters for KNiF₃ and KCoF₃.

Fig. S3 SEM-TEM images of KNCF (1-6) Samples.

Fig. S4 Element mapping of KNCF(1-6) samples from TEM images.

Fig. S5 XPS spectra of KNCF (1-6) electrode in pristine, charged-3 V and discharged-0.01 V states of the 3rd CV (0.3 mV s⁻¹) cycle with A electrolytes.

Fig. S6 TEM and SAED patterns for the KNCF (1-6) electrode incharged-3 V and discharged-0.01 V states of the 3rd CV (0.3 mV s⁻¹) cycle with A electrolytes (a); Crystalline structure information of Ni, Co, NiF₂, CoF₂, KF, LiF and Li₂CO₃phases (b).

(a)

(b)

Phases	PDF Card	Crystal system	Space group	Cell (a x b x c) / Å ³
Ni	45-1027	Hexagonal	P63/mmc	2.651 X 2.651 X 4.343
Со	05-0727	Hexagonal	P63/mmc	2.503 X 2.503 X 4.061
NiF ₂	24-0792	Tetragonal	P42/mnm	4.651 X 4.651 X 3.084
CoF ₂	38-0883	Cubic	Pa3	4.958 X 4.958 X 4.958
LiF	45-1460	Cubic	Fm-3m	4.027 X 4.027 X 4.027
KF	36-1458	Cubic	Fm-3m	5.348 X 5.348 X 5.348
Li ₂ CO ₃	22-1141	Monoclinic	C2/c(15)	8.359 x 4.977 x 6.194

Fig. S7 Ex-situ XRD patterns of KNCF (1-6) electrode in pristine, the 1st discharge (Dis)/charge (Ch) (0.1 A g⁻¹) processes with A electrolytes.

Fig. S8 Schematics of possible reaction mechanisms for KMF₃ (M=Ni, Co) electrode during the discharging/charging processes under the first two cycles.

Fig. S9 CV plots of the first three cycles of KNCF electrodes at 0.3 mV s⁻¹ with A electrolytes.

Fig. S10 GCD curves-the first five cycles of KNCF electrodes at 0.1 A g⁻¹ with A electrolytes.

Fig. S11 GCD curves of KNCF electrodes at 0.1~3.2 A g⁻¹ with A electrolytes.

Fig. S12 Rate performance and Coulombic efficiency of KNCF electrodes at 0.1~3.2~0.1 A g⁻¹ with A electrolytes.

Fig. S13 Cycling stability and Coulombic efficiency of KNCF electrodes at 1 A g⁻¹ for 1000 cycles with A electrolytes.

Fig. S14 Performance of AC electrode with A electrolytes.

Fig. S15 CV windows of KNCF//AC LICs (Ni/Co=1-0~0-1) at 50 mV s⁻¹ with A electrolytes.

Fig. S16 CV plots of KNCF//AC LICs (Ni/Co=1-0~0-1) at 10~160 mV s⁻¹ with A electrolytes.

Fig. S17 GCD curves of KNCF//AC LICs (Ni:Co=1-0~0-1) at 0.5~8 A g⁻¹ with A electrolytes.

Fig. S18 Cycling stability and Coulombic efficiency of KNCF//AC LICs (Ni:Co=1-0~0-1) at 1 A g⁻¹ with A electrolytes.

Fig. S19 GCD curves of KNCF(2-3) electrode at the precharged current densities of 0.1-2 A g⁻¹ with A electrolytes.

Fig. S20 CV windows of KNCF (2-3)//AC LICs at 50 mV s⁻¹ with the anode precharged at 0.1-2 A g⁻¹ and A electrolytes.

Fig. S21 GCD curves of KNCF (2-3)//AC LICs at 0.5-16 A g⁻¹ with the anode precharged at 0.1-2 A g⁻¹ and A electrolytes.

Fig. S22 Cycling stability and Coulombic efficiency of KNCF (2-3)//AC LICs at 5 A g⁻¹ with the anode precharged at 0.1-2 A g⁻¹ and A electrolytes.

Fig. S23 CV windows of KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 30 mV s⁻¹ with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S24 CV plots of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 10-160 mV s⁻¹ with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S25 GCD curves of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 0.5-16 A g⁻¹ with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S26 Cycling stability and Coulombic efficiency of 4 V-KNCF//AC LICs (Ni:Co=1-0, 2-3, 1-6, 0-1) at 5 A g⁻¹ with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S27 LSV plots of AC electrode and the three-electrode potential monitor for KNCF(1-6)//AC LICs at 5 A g⁻¹ with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S28 CV plots at 10~160 mV s⁻¹, GCD curves at 0.5-16 A g⁻¹, Cycling stability and Coulombic efficiency at 5 A g⁻¹ of 4.3 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S29 CV plots at 10~160 mV s⁻¹, GCD curves at 0.5-16 A g⁻¹, Cycling stability and Coulombic efficiency at 5 A g⁻¹ of 4.5 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S30 CV plots at 10-160 mV s⁻¹, GCD curves at 0.5-16 A g⁻¹, Cycling stability and Coulombic efficiency at 5 A g⁻¹ of 4.7 V-KNCF//AC LICs (Ni:Co=1-0, 1-6, 0-1) with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S31 CV plots at 10 mV s⁻¹, GCD curves at 1 A g⁻¹, Ragone plots and Cycling behavior of KNCF//AC LICs (1-0, 1-6, 0-1) under the voltages of 4.3 (1), 4.5 (2) and 4.7 (3) V with A electrolytes.

(1) 4.3 V

Fig. S32 GCD curves 0.1-3.2 A g⁻¹ and CV plots at 0.3-160 mV s⁻¹ of AC+LFP electrodes (1:1, 2:1, 4:1) with A electrolytes.

Fig. S33 CV plots at 10~160 mV s⁻¹ of KNCF (1-6)//AC+LFP (1:1) LICs under different working voltages of 4~4.7 V with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S34 GCD curves 0.5~16 A g⁻¹ of KNCF (1-6)//AC+LFP (1:1) LICs under different working voltages of 4~4.7 V with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S35 CV plots at 10 mV s⁻¹, GCD curves at 1 A g⁻¹, Ragone plots and cycling behavior of KNCF (1-6)//AC+LFP (1:1) LICs under different working voltages of 4~4.7 V with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S36 Performance of LFP electrode with A electrolytes: CV plots at 0.3~20 mV s⁻¹(a), GCD curves at 0.1 A g⁻¹ for the first five cycles (b) and different current densities (c), rate performance (d, e) and cycling behavior (f).

Fig. S37 Performance of KNCF(1-6)//LFP LIB with the anode precharged at 0.5 A g⁻¹ and A electrolytes: CV windows at 10 mV s⁻¹(a), CV plots at 10~160 mV s⁻¹ (b), GCD curves at 0.5-16 A g⁻¹ (c), Ragone behavior (d) and cycling behavior (e).

Fig. S38 CV plots at 10~160 mV s⁻¹ of KNCF (1-6)//AC LICs under different working voltages of 4~4.7 V with both the anode and cathode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S39 GCD curves $0.5\sim16$ A g⁻¹ of KNCF (1-6)//AC LICs under different working voltages of $4\sim4.7$ V with both the anode and cathode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S40 CV plots at 10 mV s⁻¹, GCD curves at 1 A g⁻¹, Ragone plots and cycling behavior of KNCF (1-6)//AC LICs under different working voltages of 4~4.7 V with the anode precharged at 0.5 A g⁻¹ and A electrolytes.

Fig. S41 CV plots at 0.3 mV s⁻¹for the first three cycles of graphite electrodes (918, SAG, KS6) with A and B (for 918) or B (for SAG, KS6) electrolytes.

Fig. S42 GCD curves at 0.1 A g⁻¹ for the first five cycles of graphite electrodes (918, SAG, KS6) with A and B (for 918) or B (for SAG, KS6) electrolytes.

Fig. S43 GCD curves at 0.1 A g⁻¹ for the first five cycles of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.

Fig. S44 CV plots at 0.3 mV s⁻¹for the first three cycles of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.

Fig. S45 GCD curves at 0.1 A g⁻¹ for the first five cycles of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.

Fig. S46 GCD curves at 0.1~3.2 A g⁻¹ of 918, 918+AC (1:1), 918+LFP (1:1) and 918+AC+LFP (1:1:1) electrodes with B electrolytes.

Fig. S47 LSV plots of 918, 918+AC (1:1), 918+LFP (1:1), 918+AC+LFP (1:1:1), KS6 and SAG electrodes at 0.3 mV s⁻¹ with B electrolytes.

Fig. S48 CV plots at 0.3 mV s⁻¹, GCD curves at 0.1~3.2 A g⁻¹, rate performance and cycling behavior of KNCF (1-6) electrode with B electrolytes.

Fig. S49 CV plots at 10~160 mV s⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP, 918+AC+LFP) DIBs under the working voltages of 0.5-5.2 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes.

Fig. S50 GCD curves at 0.5~8 A g⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP, 918+AC+LFP) DIBs under the working voltages of 0.5-5.2 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes.

Fig. S51 CV plots at 10~160 mV s⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP, 918+AC+LFP) DIBs under the working voltages of 0.5-5.5 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes.

Fig. S52 GCD curves at 0.5~8 A g⁻¹ of KNCF (1-6)//(918, 918+AC, 918+LFP, 918+AC+LFP) DIBs under the working voltages of 0.5-5.5 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes.

Fig. S53 Performance of KNCF(1-6)//SAG DIB under 1-5.2 V and 1-5.5 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes: CV windows at 10 mV s⁻¹(a), CV plots at 10~160 mV s⁻¹ (b, c), GCD curves at 0.5-8 A g⁻¹ (e, f), Ragone behavior (d, g) and cycling behavior (h, i).

Fig. S54 Performance of KNCF(1-6)//KS6 DIB under 1-5.2 V and 1-5.5 V with the anode precharged at 0.5 A g⁻¹ and B electrolytes: CV windows at 10 mV s⁻¹ (a), CV plots at 10~160 mV s⁻¹ (b, c), GCD curves at 0.5-8 A g⁻¹ (e, f), Ragone behavior (d, g) and cycling behavior (h, i).

Fig. S55 Performance of KNCF (1-6)//AC LIC with the anode precharged and A electrolytes under low temperature (-20 ℃): (a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S56 Performance of KNCF (1-6)//AC+LFP (1:1) LIC with the anode precharged and A electrolytes under low temperature (-20 ℃): (a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S57 Performance of KNCF (1-6)//AC LIC with both the anode and cathode precharged and A electrolytes under low temperature (-20 ℃): (a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S58 Performance of KNCF (1-6)//918 DIB with the anode precharged and B electrolytes under low temperature (-20 ℃): (a) CV windows at 10 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S59 Performance of KNCF (1-6)//AC LIC with the anode precharged and A electrolytes under high temperature (40 ℃): (a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S60 Performance of KNCF (1-6)//AC+LFP (1:1) LIC with the anode precharged and A electrolytes under high temperature (40 ℃):
(a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S61 Performance of KNCF (1-6)//AC LIC with both the anode and cathode precharged and A electrolytes under high temperature (40 °C): (a) CV windows at 30 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Fig. S62 Performance of KNCF (1-6)//918 DIB with the anode precharged and B electrolytes under high temperature (40 ℃): (a) CV windows at 10 mV s⁻¹, (b) CV plots at 10-160 mV s⁻¹, (c) GCD curves at 0.5-8 A g⁻¹, (d) rate performance, (e) Ragone behavior and (f) cycling behavior.

Table S1The element analysis of KNCF (Ni/Co=1-6) sample byEDS and ICP methods

	Theoretical value		E	DS	ICP		
Element	Wt. %	At. %	Wt. %	At. %	Wt. %	At. %	
К	25.18	20.00	26.86	21.61	24.81	19.72	
Ni	5.42	2.86	4.78	2.56	3.98	2.10	
Со	32.59	17.14	33.29	17.77	34.49	18.10	
F	36.81	60.00	35.07	58.06	36.82*	60.07	
Molecular formula	K1.0Ni0.14C00.86F3.0		K1.1Ni0.13	C00.87F2.9	K1.0Ni0.10C00.90F3.0		

* Note: The content of F from ICP is caculated based on the total weight ratio of 100%.

Table	S2	Specific	capacity	of	the	AC	and	KNCF	electrodes
(Ni/Co	=1-0~0)-1) with A	A electroly	tes.					

		Specific capacity / (mAh g ⁻¹)									
<i>i</i> /(Ag ⁻¹)	AC	KNCF electrodes (Ni/Co=1-0~0-1)									
	ne	1-0	6-1	3-1	3-2	1-1	2-3	1-3	1-6	0-1	
0.1	72.1	287.2	259.8	235.7	207.2	209.2	242.1	245.4	165.9	124.1	
0.2	64.2	256.4	242.0	229.4	179.4	197.5	237.8	251.3	161.1	113.0	
0.4	57.1	215.1	203.6	207.2	149.2	177.3	224.0	236.1	146.8	101.8	
0.8	51.3	151.9	158.1	171.0	120.6	149.0	197.0	210.1	123.8	87.0	
1.6	46.1	71.4	106.3	133.0	89.7	110.1	166.4	171.5	99.2	69.6	
3.2	38.9	18.1	54.5	93.0	61.1	77.3	120.2	121.9	73.1	53.6	

/AC
/A

LICs with A electrolytes.

		The design of <i>m</i> ₊ / <i>m</i> ₋ ratios under different current densities for KNCF electrodes (Ni/Co=1-0~0-1)									
<i>i</i> /(Ag ⁻¹)	1-0	6-1	3-1	3-2	1-1	2-3	1-3	1-6	0-1		
0.1	4.0	3.6	3.3	2.9	2.9	3.4	3.4	2.3	1.7		
0.2	4.0	3.8	3.6	2.8	3.1	3.7	3.9	2.5	1.8		
0.4	3.8	3.6	3.6	2.6	3.1	3.9	4.2	2.6	1.8		
0.8	3.0	3.1	3.4	2.4	2.9	3.9	4.1	2.4	1.7		
1.6	1.6	2.3	2.9	1.9	2.4	3.6	3.7	2.2	1.5		
3.2	0.5	1.4	2.5	1.6	2.1	3.1	3.2	1.9	1.4		
Average	2.8	2.9	3.2	2.4	2.8	3.6	3.8	2.3	1.7		

Table S4 The design of m_+/m_- ratios for KNCF (1-6)//AC+LFP (1:1)

	Specific	c capacity / 1	mAh g ⁻¹	<i>m</i> ₊ / <i>m</i> ₋ ratio			
<i>i /</i> A g ⁻¹	KNCF (1-6)	AC+LFP (1:1)	AC+LFP (0:1)	AC+LFP(1:1)/ KNCF(1-6)	AC+LFP(0:1) /KNCF(1-6)		
0.1	165.9	94.8	127.7	1.7	1.3:1		
0.2	161.1	90.9	123.8	1.8	1.3:1		
0.4	146.8	79.2	115.1	1.8	1.28:1		
0.8	123.8	69.4	104.0	1.8	1.19:1		
1.6	99.2	61.0	88.9	1.6	1.12:1		
3.2	73.1	50.6	71.4	1.4	1.02:1		
The des	igned value	of <i>m</i> +/ <i>m</i> - rat	1.7 (the average value)	1 (excess of KNCF (1-6) anode)			

LICs and KNCF (1-6)//AC+LFP (0:1) LIB with A electrolytes.

Table S5Specific capacity of graphite electrodes with A (918) and B(918, KS6, SAG)electrolytes, 918+AC(1:1), 918+LFP(1:1),SAG)electrolytes, 918+AC(1:1),KNCF (1-6)electrodes with B

	Specific capacity / mAh g ⁻¹										
$i/(A g^{-1})$	918*	918	KS6	SAG	918+AC	918+LFP	918+AC+LFP	KNCF(1-6)			
0.1	72	75	69	70	74	94	82	187			
0.2	63	71	64	66	69	91	74	185			
0.4	61	69	61	64	60	84	71	179			
0.8	59	67	60	61	52	77	61	157			
1.6	54	63	55	58	44	68	42	134			
3.2	24	52	22	50	24	50	17	104			

*Note: the electrolytes for 918 electrode were A electrolytes, while the electrolytes for others in the table were B electrolytes.

Table S6 The design of *m*₊/*m*₋ ratios for KNCF (1-6)//918, KNCF(1-6)//918+LFP (1:1), KNCF (1-6)//918+AC (1:1) and KNCF (1-6)//918+AC+LFP (1:1:1), KNCF (1-6)//SAG and KNCF (1-6)//KS6 DIBs with B electrolytes.

Li-DIBs or LIBs	<i>m</i> +/ <i>m</i> - ratio
KNCF (1-6)//918	1:1
KNCF (1-6)//918+LFP (1:1)	1:1
KNCF (1-6)//918+AC (1:1)	1:1
KNCF (1-6)//918+AC+LFP (1:1:1)	1:1
KNCF (1-6)//SAG	1:1
KNCF (1-6)//KS6	1:1

Table S7 Performance summary of the LICs and DIBs in the study under room temperature: KNCF//AC LICs (1-0, 2-3, 1-6, 0-1) with the anode precharged at 0.5 A g⁻¹, KNCF(1-6)//AC+LFP(1:1) LIC with anode precharged at 0.5 A g⁻¹, Ni-Co(1-6)//AC LIC with both anode and cathode precharged at 0.5 A g⁻¹ by using A electrolytes; KNCF(1-6)//918, KNCF(1-6)//918+AC(1:1), KNCF(1-6)//918+LFP(1:1) and KNCF(1-6)//918+AC+LFP(1:1:1) DIBs with anode precharged at 0.5 A g⁻¹ by using B electrolytes.

	LICs /	Working	Energy	Power	Carolin a h shari	
Туре	Li-DIBs /	voltage	density	density	Cycling benavio	or / retention%,
	LIBs	/ V	/ Wh kg-1	/ kW kg ⁻¹	repeated cycles,	, current density
		0.01-4.0	71-32.4-1.3	0.25-2-9.2	71%/3000/5A g ⁻¹	60%/5000/5A g ⁻¹
	KNCF(1-0)//AC	0.01-4.3	86-42.4-6	0.27-2.2-6	70%/3000/5A g ⁻¹	59%/5000/5A g ⁻¹
	(1:2.8)	0.01-4.5	107-61-14	0.28-2.3-9	30%/1000/5A g ⁻¹	23%/5000/5A g ⁻¹
		0.01-4.7	130-71-17.4	0.3-2.3-9.5	29%/1000/5A g ⁻¹	10%/5000/5A g ⁻¹
		0.01-4.0	42-27-15	0.36-2.9-11.3	65%/1000/5A g ⁻¹	45%/5000/5A g ⁻¹
	KNCF(0-1)//AC	0.01-4.3	60-31-5.1	0.36-3-11.5	60%/1000/5A g ⁻¹	28%/5000/5A g ⁻¹
	(1:1.7)	0.01-4.5	64-42-23	0.36-3.1-13	45%/1000/5A g ⁻¹	31%/5000/5A g ⁻¹
		0.01-4.7	74-44-20	0.43-3.4-12.7	53%/1000/5A g ⁻¹	15%/5000/5A g ⁻¹
		0.01-4.0	61-37-15	0.3-2.4-9.5	119%/3000/5A g ⁻¹	116%/5000/5A g ⁻¹
	KNCF(1-6)//AC (1:2.3)	0.01-4.3	78-44-23	0.32-2.6-10.1	78%/3000/5A g ⁻¹	70%/5000/5A g ⁻¹
LICs		0.01-4.5	96-46-11	0.33-2.6-10.5	64%/1000/5A g ⁻¹	35%/5000/5A g ⁻¹
		0.01-4.7	112-58-16	0.35-2.8-11.2	43%/1000/5A g ⁻¹	22%/5000/5A g ⁻¹
		0.01-4.0	95-61-27	0.37-3-11.8	82%/3000/5A g ⁻¹	79%/5000/5A g ⁻¹
	KNCF(1-6)//AC+LFP (1:1.7)	0.01-4.3	110-68-38	0.4-3.2-12.7	73%/1000/5A g ⁻¹	40%/5000/5A g ⁻¹
		0.01-4.5	129-75-31	0.42-3.4-12.6	79%/1000/5A g ⁻¹	33%/5000/5A g ⁻¹
		0.01-4.7	140-78-20	0.43-3.4-13.8	68%/1000/5A g ⁻¹	31%/5000/5A g ⁻¹
	KNCF(1-6)//AC	0.01-4.0	73-46-20	0.3-2.4-9.6	97%/3000/5A g ⁻¹	93%/5000/5A g ⁻¹
	(1:2.3)	0.01-4.3	87-56-28	0.32-2.6-10.3	76%/3000/5A g ⁻¹	46%/5000/5A g ⁻¹
	(both electrodes	0.01-4.5	104-61-27	0.34-2.7-10.8	72%/1500/5A g ⁻¹	33%/5000/5A g ⁻¹
	precharged)	0.01-4.7	114-70-37	0.35-2.8-11.1	73%/1500/5A g ⁻¹	18%/5000/5A g ⁻¹
	KNCF(1-6)//918	0.5-5.2	152-118-46	0.9-3.4-10.4	74%/300/2A g ⁻¹	69%/500/2A g ⁻¹
	(1:1)	0.5-5.5	196-159-93	1-3.8-12.4	90%/100/2A g ⁻¹	73%/200/2A g ⁻¹
	KNCF(1-6)//918+AC	0.5-5.2	104-76-29	0.58-2.3-9.4	69%/300/2A g ⁻¹	64%/500/2A g ⁻¹
	(1:1)	0.5-5.5	119-87-37	0.6-2.5-10	63%/100/2A g ⁻¹	36%/200/2A g ⁻¹
DIBS	KNCF(1-6)//918+LFP	0.5-5.2	131-104-65	0.8-3-10.7	62%/300/2A g ⁻¹	46%/500/2A g ⁻¹
	(1:1)	0.5-5.5	167-134-54	0.8-3-9.4	77%/100/2A g ⁻¹	54%/200/2A g ⁻¹
	KNCF(1-6)//	0.5-5.2	107-84-43	0.6-2.4-9.4	79%/300/2A g ⁻¹	66%/500/2A g ⁻¹
	918+AC+LFP (1:1)	0.5-5.5	125-97-38	0.6-2.5-9.9	63%/100/2A g ⁻¹	39%/200/2A g ⁻¹

Table S8 Performance summary of the LICs and DIBs in the study under high and low temperatures : KNCF(1-6)//AC, KNCF(1-6)//AC+LFP(1:1) LICs with the anode precharged at 0.5 A g⁻¹, KNCF(1-6)//AC LIC with both anode and cathode precharged at 0.5 A g⁻¹ by using A electrolytes; KNCF(1-6)//918 DIBs with anode precharged at 0.5 A g⁻¹ by using B electrolytes.

Туре	LICs / Li-DIBs / LIBs	T / ℃	Voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling / retention%, current	behavior repeated cycles, t density
	KNCF(1-6)//AC (1:2.3)	-20	0.01-4.3	43.9-12.6	0.32-5.1	66%/500/2 A g ⁻¹	28%/5000/2 A g ⁻¹
		40	0.01-4.3	87.1-45.9	0.31-5.0	51%/500/2 A g ⁻¹	37%/1000/2 A g ⁻¹
LICs	KNCF(1-6)//AC+LFP	-20	0.01-4.3	26.4-3.5	0.38-6.3	71%/3000/2 A g ⁻¹	68%/5000/2 A g ⁻¹
LICS	(1:1.7)	40	0.01-4.3	120-56	0.4-6.4	40%/500/2 A g ⁻¹	29%/1000/2 A g ⁻¹
	KNCF(1-6)//AC (1:2.3)	-20	0.01-4.3	30.6-6.9	0.31-5.0	60%/3000/2 A g ⁻¹	43%/5000/2A g ⁻¹
	(both electrodes precharged)	40	0.01-4.3	104-54	0.32-5.1	61%/500/2 A g ⁻¹	35%/1000/2 A g ⁻¹
DIBs	KNCF(1-6)//918 (1:1)	-20	1-5.6	165-109-61	1.1-4.2-7.5	65%/500/1 A g ⁻¹	43%/2000/1A g ⁻¹
		40	1-5.2	166-116-78	1.1-8.3-12.8	78%/100/1 A g ⁻¹	64%/150/1A g ⁻¹

LICs	Working voltage / V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density	Refs.
CTAB-Sn(IV)@Ti ₃ C ₂ //AC	1.0-4.0	105.56-45.31	0.495-10.8	71.1%/4000/2 A g ⁻¹	[1]
Fe ₂ O ₃ @C//N-HPC	1.0-4.0	65-31	0.368-9.2	84.1%/1000/1 A g ⁻¹	[2]
Li ₄ Ti ₅ O ₁₂ /C//PGM	1.0-3.0	72-40	0.65-8.3	65%/1000/10 A g ⁻¹	[3]
H-TiO ₂ /PPy/SWCNTs//AC	1.0-3.0	31.3-1.9	0.2-4.0	77.8%/3000/0.5 A g ⁻¹	[4]
hp-LVO/C//CMK-3	0.2-4.3	105-62	0.188-9.3	71%/2000/1 A g ⁻¹	[5]
LiNi _{0.5} Mn _{1.5} O ₄ //AC	1.5-3.25	19-8	0.13-3.5	81%/3000/1 A g ⁻¹	[6]
100-LTO-G-600C//AC	1.5-3.0	52-12.8	0.225-57.6	97%/2000/25 A g ⁻¹	[7]
Li ₃ VO ₄ //AC	1.0-4.0	136.4-24.4	0.532-11.02	87%/1500/2 A g ⁻¹	[8]
MnNCN//AC	0.1-4.0	103-10	0.14-8.533	100%/5000/5 A g ⁻¹	[9]
TiO ₂ NBA// graphene hydrogels	0.0-3.8	82-21	0.57-19	73%/600/1 A g ⁻¹	[10]
TiO2@EEG//EEG	0.0-3.0	72-10	0.303-2.0	68%/1000/1.5 A g ⁻¹	[11]
3D HTO NWAs//AC	0.0-3.0	93.8-33.3	0.3-15	78.8%/3000/5 A g ⁻¹	[12]
SnO ₂ -C//C	0.5-4.0	110-49	0.19-2.96	80%/2000/1 A g ⁻¹	[13]
	0.01-4.0	95-61-27	0.37-3-11.8	82%/3000/5 A g ⁻¹ 79%/5000/5 A g ⁻¹	
KNCF(1-6)//AC+LFP (1-1-7)	0.01-4.3	110-68-38	0.4-3.2-12.7	$73\%/1000/5~A~g^{\text{-1}}$	
(1:1.7)	0.01-4.5	129-75-31	0.42-3.4-12.6	79%/1000/5 A g ⁻¹	
	0.01-4.7	140-78-20	0.43-3.4-13.8	68%/1000/5 A g ⁻¹	This
	0.01_4.0	73-46-20	0 3-2 4-9 6	97%/3000/5 A g ⁻¹	work
(1.7 3)	0.01-4.0	/5-40-20	0.0-2.7-2.0	93%/5000/5 A g ⁻¹	
(hoth electrodes	0.01-4.3	87-56-28	0.32-2.6-10.3	76%/3000/5 A g ⁻¹	
nrecharged)	0.01-4.5	104-61-27	0.34-2.7-10.8	72%/1500/5 A g ⁻¹	
prechargeu)	0.01-4.7	114-70-37	0.35-2.8-11.1	73%/1500/5 A g ⁻¹	

Table S9A comparison of this work with some advanced LICs

DIBs	Working voltage /V	Energy density / Wh kg ⁻¹	Power density / kW kg ⁻¹	Cycling behavior / retention%, repeated cycles, current density	Refs.
Graphite//Graphite	0.01-5.2	108 (0.05 A g ⁻¹)	/	67%/50/0.05 A g ⁻¹	[14]
Li//Graphite	3.4-5.0	220 (0.05 A g ⁻¹)	/	71%/500/0.05 A g ⁻¹	[15]
Al//graphite	3.0-5.0	222-150	0.132-1.2	88%/200/0.2 A g ⁻¹	[16]
ME-DIB (3D Al//graphite)	3.0-4.95	206-158	0.166-1.758	92.4%/1000/0.2 A g ⁻¹	[17]
Graphite (MTI)//KS6	3.0-5.1	125-25	0.4-0.5	200/90%/0.5 A g ⁻¹	[18]
TiO ₂ //Graphite	1.5-3.7	36 (0.1 Ag ⁻¹)		88.6%/50/0.1 A g ⁻¹	[19]
Nb ₂ O ₅ //Graphite	1.5-3.5	52 (0.1 Ag ⁻¹)	/	85%/50/0.1 A g ⁻¹	[20]
MoO ₃ //KS6	1.5-3.5	77 (0.1 Ag ⁻¹)	/	90%/200/0.1 A g ⁻¹	[21]
2D Si//Graphite	0-3.5	54 (0.1 Ag ⁻¹) 40 ℃	/	61%/100/0.1 A g ⁻¹	[22]
	0553	152-118-46	0.9-3.4-10.4	74%/300/2A g ⁻¹	
KNCF(1-6)//918	0.5-5.2	$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \text{ A g}^{-1})$	69%/500/2A g ⁻¹	
(1:1)	0.5-5.5	196-159-93	1-3.8-12.4	90%/100/2A g ⁻¹	
	0.5-5.5	$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \text{ A g}^{-1})$	73%/200/2A g ⁻¹	
	0552	104-76-29	0.58-2.3-9.4	69%/300/2A g ⁻¹	
KNCF(1-6)//918+AC	0.5-5.2	$(0.5-2-8 \mathrm{Ag^{-1}})$	$(0.5-2-8 \text{ A g}^{-1})$	64%/500/2A g ⁻¹	
(1:1)	0.5-5.5	119-87-37	0.6-2.5-10	63%/100/2 Λ σ ⁻¹	
	0.0-5.5	$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \text{ A g}^{-1})$	0370/100/2Ag	This
	0.5-5.2	131-104-65	0.8-3-10.7	62%/300/2A σ ⁻¹	work
KNCF(1-6)//918+LFP		$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \text{ A g}^{-1})$	02/0/000/201g	
(1:1)	0.5-5.5	167-134-54	0.8-3-9.4	77%/100/2A g ⁻¹	
		$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \text{ A g}^{-1})$		
KNCF(1-6)//	0.5-5.2	107-84-43	0.6-2.4-9.4	79%/300/2A g ⁻¹	
918+AC+LFP		$(0.5-2-8 \text{ A g}^{-1})$	$(0.5-2-8 \mathrm{Ag^{-1}})$	66%/500/2A g ⁻¹	
(1:1)	0.5-5.5	125-97-38	0.6-2.5-9.9	63%/100/2A g ⁻¹	
		$(0.5-2-8 \mathrm{A g^{-1}})$	$(0.5-2-8 \text{ A g}^{-1})$	9	

Table S10A comparison of this work with some advanced DIBs

Chemials, Agents and Materials	Type or level	Company	Detailed characteristics or parameters
NiCl ₂ •6H ₂ O	AR	SinoPharm	purity≥98.0%
CoCl ₂ •6H ₂ O	AR	SinoPharm	purity≥99.0%
KF•2H ₂ O	AR	SinoPharm	purity≥99.0%
PVP-K30	GR	SinoPharm	K value (%): 27.4-32.0; N (%): 11.5~12.8
EG	AR	SinoPharm	purity≥99.0%
NMP	AR	SinoPharm	purity≥99.0%
AB	Battery grade	/	/
PVDF	Battery grade	/	/
Li plate	15.6*0.45 mm	China Energy	15.6*0.45 mm
Cu foil	200*0.015	GuangZhou JiaYuan	Total thickness: 15 μ m; weight: 87 g m ⁻²
Carbon coated-Al foil	222*0.015	GuagZhou NaNuo	Total thickness: 17 μm; Strength: 192 Mpa
Glass	GF/D 2.7 μm;	Whatman	Diameter: 25 mm; Thickness: 675 µm;
microfiber filters	1823-025		weight: 121 g m ⁻²
AC	YEC 8b	FuZhou YiHuan	D50: ~10 µm; Density: 0.4 g cm ⁻³ ;
			SSA:2000~2500 m ² g ⁻¹
Graphite	918	BTR	D50: 17-20 µm; Tab: 0.95-1.2 g cm ⁻³ ;
			$SSA:3.0-4.0 \text{ m}^2 \text{ g}^{-1}$
Graphite	SAG	BTR	D50: $19.0 \pm 1.5 \ \mu\text{m}$; 1ab: $0.9 \pm 0.1 \ \text{g cm}^{-3}$;
			$53A.5.5 \pm 0.5$ III g
Graphite	KS6	TiMCAL	0 3354-0 3360 nm ⁻
			SSA: 20 $m^2 g^{-1}$;
			Density-Scott: 0.07 g cm ⁻³ ;
LiFePO4	LFP-NCO	Aleees	D50: $4 \pm 2 \mu m$; Tab: $1 \pm 0.2 \text{ g cm}^{-3}$;
			SSA:13 \pm 2 m ² g ⁻¹
A electrolytes	LBC-305-01	CAPCHEM	1 M LiPF ₆ /EC:EMC:DMC (1:1:1) /1% VC
B electrolytes	LBC-3045I	CAPCHEM	1 M LiPF ₆ /EC:EMC:DEC (1:1:1)/ FEC,etc.
Cell components	CR-2032	ShenZhen TianChenHe	/

Table S11 Chemicals, agents and materials used in this study
Methods: Calculations for m_+/m_- , C_m , E_m , P_m

The mass ratios of positive and negative active materials for the LICs at various current densities were calculated based on the charge-balance ($Q^+ = Q^-$), as shown in equation (1). The specific capacity (C_m , mAh g⁻¹), energy density (E_m , Wh kg⁻¹) for LICs, energy density (E_m , Wh kg⁻¹) for Li-DIBs and LIBs, and power density (P_m , kW kg⁻¹) were calculated according to the equations (2), (3), (4) and (5).

$$m_{+}/m_{-} = Q_{\rm m}/Q_{\rm m}+$$
 (1)

$$C_{\rm m} = Q_{\rm m} / 3.6 = I t / 3.6 m \tag{2}$$

$$E_{\rm m} \left(\text{Capacitor} \right) = \left(C_{\rm m} \bigtriangleup V \right) / 2 \tag{3}$$

$$E_{\rm m} \,({\rm Battery}) = (C_{\rm m} \,V) \tag{4}$$

$$P_{\rm m} = 3.6 \ E_{\rm m} \ / \ t_{\rm d} \tag{5}$$

Where *m*, Q_m , $\triangle V$, *V*, *I* and *t* refer to the mass of active materials (g) (for half cells, it means the mass of active materials of anode or cathode; for full cells, it means the total masses of active materials of anode and cathode), specific charge quantity (C g⁻¹), potential window (V), potential of the discharging plateaus (V), current (A) and charging or discharging time (s) (for anode, it means the charging time; for cathode and full cells, it refers to the discharging time), respectively.

The references in the Tables S9-10:

[1] J. M. Luo, W. K. Zhang, H. D. Yuan, C. B. Jin, L. Y. Zhang, H. Huang, C. Liang, Y. Xia, J. Zhang, Y. P. Gan and X. Y. Tao, Pillared structure design of mxene with ultralarge interlayer spacing for high-performance lithium-ion capacitors, *ACS Nano*, 2017, **11**, 2459-2469.

[2] X. L. Yu, J. J. Deng, C. Z. Zhan, R. T. Lv, Z. H. Huang, F. Y. Kang, A high-power lithium-ion hybrid electrochemical capacitor based on citrate-derived electrodes, *Electrochim*. *Acta*, 2017, **228**, 76-81.

[3] L. Ye, Q. H. Liang, Y. Lei, X. L. Yu, C. P. Han, W. C. Shen, Z. H. Huang, F. Y. Kang, Q.-H. Yang, A high performance li-ion capacitor constructed with li4ti5o12/c hybrid and porous graphene macroform. *J. Power Sources*, 2015, **282**, 174-178.

[4] G. Tang, L. J. Cao, P. Xiao, Y. H. Zhang, H. Liu, A novel high energy hybrid li-ion capacitor with a three-dimensional hierarchical ternary nanostructure of hydrogen-treated TiO₂ nanoparticles/conductive polymer/carbon nanotubes anode and an activated carbon cathode, *J. Power Sources*, 2017, **355**, 1-7.

[5] X. N. Xu, F. E. Niu, D. P. Zhang, C. X. Chu, C. S. Wang, J. Yang, Y. T. Qian, Hierarchically porous Li₃VO₄/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors, *J. Power Sources*, 2018, **384**, 240-248.

[6] H.-K. Kim, D. Mhamane, M.-S. Kim, H.-K. Roh, V. Aravindan, S. Madhavi, K. C. Roh, K.-B. Kim, Nanostructured spinel LiNi_{0.5}Mn_{1.5}O₄ as new insertion anode for advanced li-ion capacitors with high power capability, *Nano Energy*, 2015, **12**, 69-75.

[7] G. K. Wang, C. X. Lu, X. Zhang, B. Wan, H. Y. Liu, M. R. Xia, H. Y. Gou, G. Q. Xin, J. Lian,
Y. G. Zhang, Toward ultrafast lithium ion capacitors: a novel atomic layer deposition seeded preparation of Li₄Ti₅O₁₂/graphene anode, *Nano Energy*, 2017, **36**, 46-57.

[8] L. F. Shen, H. F. Lv, S. Q. Chen, P. Kopold, P. A. van Aken, X. J. Wu, J. Maier and Y. Yu, Peapod-like Li₃VO₄/N-doped carbon nanowires with pseudocapacitive properties as advanced materials for high-energy lithium-ion capacitors, *Adv. Mater.*, 2017, **29**, 1700142.

[9] C. F. Liu, C. K. Zhang, H. Y. Fu, X. H. Nan and G. Z. Cao, Exploiting high-performance anode through tuning the character of chemical bonds for li-ion batteries and capacitors, *Adv. Energy Mater.*, 2017, **7**, 1601127.

[10] H. W. Wang, C. Guan, X. F. Wang and H. J. Fan, A high energy and power li-ion capacitor based on a TiO_2 nanobelt array anode and a graphene hydrogel cathode. *Small*, 2015, 11, 1470-1477.

[11] F. X. Wang, C. Wang, Y. J. Zhao, Z. C. Liu, Z. Chang, L. J. Fu, Y. S. Zhu, Y. P. Wu and D. Y. Zhao, A quasi-solid-state li-ion capacitor based on porous TiO₂ hollow microspheres wrapped with graphene nanosheets. *Small*, 2016, **12**, 6207.

[12] L. F. Que, Z. B. Wang, F. D. Yu and D. M. G, 3D ultralong nanowire arrays with a tailored hydrogen titanate phase as binder-free anodes for Li-ion capacitors, *J. Mater. Chem. A*, 2016, **4**, 8716-8723.

[13] W.-H. Qu, F. Han, A.-H. Lu, C. Xing, M. Qiao and W.-C. Li, Combination of a $SnO_2 - C$ hybrid anode and a tubular mesoporous carbon cathode in a high energy density non-aqueous lithium ion capacitor: preparation and characterisation, *J. Mater. Chem. A*, 2014, **2**, 6549

[14] J. A. Read, A. V. Cresce, M. H. Ervin and K. Xu, Dual-graphite chemistry enabled by a high voltage electrolyte. *Energy Environ. Sci.*, 2014, **7**, 617-620.

[15] P. Meister, V. Siozios, J. Reiter, S. Klamor, S. Rothermel, O. Fromm, H.-W. Meyer, M. Winter and T. Placke, Dual-ion cells based on the electrochemical intercalation of asymmetric fluorosulfonyl-(trifluoromethanesulfonyl) imide anions into graphite, *Electrochim. Acta*, 2014, **130**, 625-633.

[16] X. L. Zhang, Y. B. Tang, F. Zhang and C.-S. Lee, A Novel Aluminum-Graphite Dual-Ion Battery, *Adv. Energy. Mater.*, 2016, **6**, 1502588.

[17] S. Q. Zhang, M. Wang, Z. M. Zhou and Y. B. Tang, Multifunctional Electrode Design Consisting of 3D Porous Separator Modulated with Patterned Anode for High-Performance Dual-Ion Batteries, *Adv. Funct. Mater.*, 2017, **27**, 1703035.

[18] C. Y. Chan, P.-K. Lee, Z. H. Xu and D. Y. W. Yu, Designing high-power graphite-based dual-ion batteries, *Electrochim. Acta*, 2018, **263**, 34-39.

[19] A. K. Thapa, G. Park, H. Nakamura, T. Ishihara, N. Moriyama, T. Kawamura, H. Y. Wang and M. Yoshio, Novel graphite/TiO₂ electrochemical cells as a safe electric energy storage system, *Electrochim. Acta*, 2010, **55**, 7305-7309.

[20] G. Park, N. Gunawardhana, C. Lee, S. M. Lee, Y. S. Lee and M. Yoshio, Development of a novel and safer energy storage system using a graphite cathode and Nb₂O₅ anode, *J. Power Sources*, 2013, **236**, 145-150.

[21] N. Gunawardhana, G. J. Park, N. Dimov, A. K. Thapa, H. Nakamura, H. Y. Wang, T. Ishihara and M. Yoshio, Constructing a novel and safer energy storing system using a graphite cathode and a MoO₃ anode, J. Power Sources, 2011, **196**, 7886-7890.

[22] H. Nakano, Y. Sugiyama, T. Morishita, M. J. S. Spencer, I. K. Snook, Y. Kumai and H. Okamoto, Anion secondary batteries utilizing a reversible BF₄ insertion/extraction two-dimensional Si material, *J. Mater. Chem. A*, 2014, **2**, 7588-7592.