## Supporting Information for:

## Preparation and characterization of crosslinked poly(vinylimidazolium) anion exchange membranes for artificial photosynthesis

Blaine M. Carter<sup>1</sup>, Laura Keller<sup>2</sup>, Matthias Wessling<sup>2,3</sup>, and Daniel J. Miller<sup>1†</sup>

†Corresponding Author, Tel: +1 (510) 495-2353 E-mail: <u>danieljmiller@lbl.gov</u>

<sup>1</sup>Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 97420, United States

<sup>2</sup>RWTH Aachen University, Chemical Process Engineering, Forckenbeckstr. 51, 52074 Aachen, Germany

<sup>3</sup>DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany



Fig. S1. <sup>1</sup>H (500 MHz, CDCl<sub>3</sub>) of compound ii

[ \*1e6] Compound ii 12 34.06 23.86 23.68 23.66 23.66 23.78 23.78 23.78 23.78 23.78 23.78 23.78 23.78 23.78 ₹ 77.27 ₹ 77.02 76.76 - 6 œ - 9 4 2 • 150 **50** 200 100 0 [ppm]

Fig. S2. <sup>13</sup>C (500 MHz, CDCl<sub>3</sub>) of compound ii

[ \*1e6] Monomer 1 - 3.32 - 8.22 - 7.95 7.33 7.31 7.29 7.28 ₹ 4.21 ₹ 4.19 4.18 - 1.81 1.27 1.24 9.56 2.50 - 00 - 9 4 2 0 16.00 8 2.02 2.05 1.98 9 2.04 4.01 4.00 10 2 4 [ppm]

Fig. S3. <sup>1</sup>H (500 MHz, DMSO-*d*<sub>6</sub>) of monomer **1** 



Fig. S4. <sup>13</sup>C (500 MHz, DMSO-*d*<sub>6</sub>) of monomer **1** 

Fig. S5. <sup>1</sup>H (500 MHz, DMSO- $d_6$ ) of monomer 2





Fig. S6. <sup>13</sup>C (500 MHz, DMSO- $d_6$ ) of monomer **2** 

Fig. S7. <sup>1</sup>H (500 MHz, DMSO- $d_6$ ) of monomer **1a** 



Due to the non-selective chemistry, the first reaction step produces monomer **1** that cannot be separated from monomer **1a**. Since monomer **1a** contains a unique CH proton at 9.19 ppm, but both monomer **1** and **1a** contain a CH proton at 9.61 ppm, the ratio of monomer **1a** and **1** is given by:

$$\frac{\text{monomer } \mathbf{1a}}{\text{monomer } \mathbf{1}} = \frac{I_{CH \ at \ 9.19 \ ppm}}{(I_{CH \ at \ 9.61 \ ppm} - I_{CH \ at \ 9.19 \ ppm})/2}$$

The mol % of monomer **1a** can be calculated as follows:

monomer **1a** (mol %) =  $\frac{I_{CH at 9.19 ppm}}{I_{CH at 9.19 ppm} + (I_{CH at 9.61 ppm} - I_{CH at 9.19 ppm})/2}$  $= \frac{2 I_{CH at 9.19 ppm}}{I_{CH at 9.19 ppm} + I_{CH at 9.61 ppm}}$ 



Fig. S8.  $^{13}$ C (500 MHz, DMSO- $d_6$ ) of monomer **1a** 

Fig. S9. <sup>1</sup>H (500 MHz, DMSO-d<sub>6</sub>) of monomer 2a



Due to the non-selective chemistry, the first reaction step produces monomer 2 that cannot be separated from monomer 2a. Since monomer 2a contains a unique CH proton at 9.13 ppm, but both monomer 2 and 2a contain a CH proton at 9.52 ppm, the ratio of monomer 2a and 2 is given by:

$$\frac{\text{monomer } 2a}{\text{monomer } 2} = \frac{I_{CH \ at \ 9.13 \ ppm}}{(I_{CH \ at \ 9.52 \ ppm} - I_{CH \ at \ 9.13 \ ppm})/2}$$

The mol % of monomer **2a** can be calculated as follows:

monomer **2a** (mol %) = 
$$\frac{I_{CH at 9.13 ppm}}{I_{CH at 9.13 ppm} + (I_{CH at 9.52 ppm} - I_{CH at 9.13 ppm})/2}$$
$$= \frac{2 I_{CH at 9.13 ppm}}{I_{CH at 9.13 ppm} + I_{CH at 9.52 ppm}}$$



Fig. S10. <sup>13</sup>C (500 MHz, DMSO- $d_6$ ) of monomer **2a** 

Fig. S11. Temperatures used to prepare membranes at different prepolymerization solvent contents. Curing was performed by photopolymerization.

| Prepolymerization       | Solvent  | Monomer               | Polymerization   |
|-------------------------|----------|-----------------------|------------------|
| solvent content (wt. %) |          |                       | temperature (°C) |
| 12.50                   | Water    | <b>1</b> or <b>1a</b> | 80               |
| 25.00                   | Water    | <b>1</b> or <b>1a</b> | 20               |
| 37.50                   | Water    | <b>1</b> or <b>1a</b> | 20               |
| 50.00                   | Water    | <b>1</b> or <b>1a</b> | 20               |
| 31.25                   | Methanol | <b>1</b> or <b>1a</b> | 45               |
| 37.50                   | Methanol | <b>1</b> or <b>1a</b> | 35               |
| 43.75                   | Methanol | <b>1</b> or <b>1a</b> | 35               |
| 50.00                   | Methanol | <b>1</b> or <b>1a</b> | 25               |
| 25.00                   | Methanol | 2 or 2a               | 40               |
| 31.25                   | Methanol | <b>2</b> or <b>2a</b> | 35               |
| 37.50                   | Methanol | 2 or 2a               | 35               |
| 50.00                   | Methanol | 2 or 2a               | 25               |



Fig. S12. Representative ATR FTIR spectra of monomer **1** before and after polymerization. Polymer was dried in a vacuum oven to remove solvent prior to measurement.







Fig. S14. Representative ATR FTIR spectra of monomer **1** and **1a** before and after polymerization. Polymers were dried in a vacuum oven to remove solvent prior to measurement.



Fig. S15. Representative ATR FTIR spectra of monomer **2** and **2a** before and after polymerization. Polymers were dried in a vacuum oven to remove solvent prior to measurement.

## 2.10 Thermal characterization

Differential scanning calorimetry (DSC) was performed on dried polymer films using a TA Instruments Q20 (New Castle, DE). All samples were dried under vacuum (< 1 Torr, 40 °C) for a minimum of 24 h before analysis. To erase the thermal history of the samples, they were heated to 200 °C at 10 °C/min or 20 °C/min, held isothermally for 5 min, and then cooled to -80 °C at 5 °C/min or 10 °C/min and held isothermally for 5 min. This cycle was repeated and the second cycle was used for analysis.

Thermogravimetric analysis (TGA) was performed on dry polymer films using a TA Instruments Q50 (New Castle, DE). All samples were dried under vacuum (< 1 Torr, 40 °C) for a minimum of 24 h before analysis. Samples were equilibrated at 25 °C, then heated to 500 °C at 5 °C/min and held isothermally for 5 min.