The supporting information for

Self-floating nanostructural Ni-NiO_x/Ni foam for solar thermal water evaporation

Dandan Wu^a, Dan Qu^a*, Wenshuai Jiang^a, Ge Chen^a, Li An^a, Chunqiang Zhuang^b

and Zaicheng Sun^a

^a Beijing Key Laboratory of Green Catalysis and Separation, Department of
Chemistry and Chemical Engineering, College of Environmental and Energy
Engineering, Beijing University of Technology, 100 Pingleyuan, Chaoyang District,
Beijing 100124, P. R. China.

Email: danqu@bjut.edu.cn (DQ)

 ^b Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China

Content

The supporting	Page			
information				
Figure S1	3			
Figure S2	4			
Figure S3-S4	5			
Figure S5-S6	6			
Figure S7	7			
The equation S1-S2	8			
Table S1-S2	9			
Figure S8	10			
Figure S9	11			
Table S3	12			
Figure S10	13			
Figure S11-S12	14			
Figure S13-S14	15			
Figure S15	16			
Table S4	17			
Reference	18			

Figure S1. A home-made solar seawater desalination system to simulate solar seawater desalination.

Figure S2. The X-ray diffraction (XRD) pattern of the Ni(OH)₂/NF, JCPDS Card No.38-0715.

Figure S3. (a) The X-ray diffraction (XRD) pattern of the $Ni(OH)_2$ at different calcining temperatures from 300 to 500 °C for 1h. (b) Intensity variation diagram of characteristic peaks(43.3°) of NiO/NF.

Figure S4. (a) The X-ray diffraction (XRD) pattern of NiO/NF at different temperature being reduced. (b) Intensity variation diagram of characteristic peak(43.3°) of NiO/NF.

Figure S5. (a-b) The X-ray photoelectron spectroscopy (XPS) spectra of Ni foam, Ni(OH)₂.

Figure S6. (a-b) The TEM and HRTEM of the $Ni(OH)_2$, the high resolution (HR) TEM image illustrates the lattice fringe space of 0.154 nm relating to the $Ni(OH)_2$ (110).

Figure S7. (a-b) The TEM and HRTEM of the Ni(OH)₂, the high resolution (HR) TEM image illustrates the lattice fringe space of 0.243 nm relating to the NiO(111).

The equation S1

$$\alpha_{sol} = \frac{\int_{0.28\,\mu m}^{2.5\,\mu m} I_{sol} \cdot \alpha(\lambda) \cdot d\lambda}{\int_{0.28\,\mu m}^{2.5\,\mu m} I_{sol}(\lambda) \cdot d\lambda} = \frac{\int_{0.28\,\mu m}^{2.5\,\mu m} I_{sol}(\lambda) \cdot [1 - R(\lambda)] \cdot d\lambda}{\int_{0.28\,\mu m}^{2.5\,\mu m} I_{sol}(\lambda) \cdot d\lambda}$$

The equation S2

$$\alpha(\lambda) = 1 - R(\lambda) - T(\lambda) = 1 - R(\lambda)$$

Where, a_{sol} is overall solar absorptance. $I_{sol}(l)$ is the radiation intensity at wavelength l in AM 1.5 solar spectrum . R(l)and T(l) are reflectance and transmittance at wavelength l, respectively.

Sample	Total(A,%)
Ni foam	68.09
Ni(OH) ₂ /Ni foam	70.50
NiO/Ni foam	88.16
Ni-NiO _x /Ni foam	90.31

 Table S1. Calculation data of absorbance of different samples.

Table S2. Calculation data of thethermal conductivity of different samples.

Thermal conductivity = thermal diffusion coefficient '	* density *	specific	heat.
--	-------------	----------	-------

Sample	Temp. ℃	Dia. mm	THK mm	Volume mm³	Mass mg	Density g/cm³	Thermal diffusion cm²/s	Specific heat J/g*C	Thermal conductivity (W/MK)
Ni foam	30	12.7	0.293	37.10	206.02	5.55	0.0044	0.43	1.04
Ni(OH) _{2/} NF	31	12.7	0.157	19.88	92.99	4.68	0.0033	0.45	0.69
NiO/NF	29	12.7	0.281	35.58	172.75	4.86	0.0047	0.43	0.99
Ni-NiO _x /NF	30	12.7	0.266	33.68	158.98	4.72	0.0012	0.43	0.24

Figure S8. (a-c) The contact angles of the original Ni foam, $Ni(OH)_2$ nanosheets, NiO nanosheets samples display super hydrophilic behavior.

Figure S9. (a-f) The infrared images of water and NF, Ni(OH)₂/NF and NiO/NF films floating on the water before and after 2 hours irradiation.

Table S3. Calculation data of the evaporation rate and conversion efficiency of
different samples.

Fitting equation	Evaporation rate ofwater(v,kg/m ² h)	Power of the evaporation (kJ/m² h)	Conversion efficiency(ŋ,%)
Y=0.0566x+8E-05	0.0566	2444.60	3.84
Y=0.1545x+0.0123	0.1545	2439.35	10.47
Y=0.6941x-0.1019	0.6941	2426.40	46.78
Y=0.9683X-0.0451	0.9683	2412.54	64.89
Y=1.1674x-0.0963	1.1674	2409.39	78.13
Y=1.302x-0.1257	1.302	2406.99	87.05
Ni-NiO,/Ni foam Y=1.4092x-0.1303		2398.38	93.88
	Y=0.0566x+8E-05 Y=0.1545x+0.0123 Y=0.6941x-0.1019 Y=0.9683X-0.0451 Y=1.1674x-0.0963 Y=1.302x-0.1257 Y=1.4092x-0.1303	Y=0.0566x+8E-05 0.0566 Y=0.1545x+0.0123 0.1545 Y=0.6941x-0.1019 0.6941 Y=0.9683X-0.0451 0.9683 Y=1.1674x-0.0963 1.1674 Y=1.302x-0.1257 1.302 Y=1.4092x-0.1303 1.4092	Hitting equation Evaporation rate ofwater(v,kg/m² h) Fourporation evaporation (kJ/m² h) Y=0.0566x+8E-05 0.0566 2444.60 Y=0.1545x+0.0123 0.1545 2439.35 Y=0.6941x-0.1019 0.6941 2426.40 Y=0.9683X-0.0451 0.9683 2412.54 Y=1.1674x-0.0963 1.1674 2409.39 Y=1.302x-0.1257 1.302 2406.99 Y=1.4092x-0.1303 1.4092 2398.38

Figure S10. (a) The step 2 of the synthesis process (optimize preparation condition 1) : the dependence of evaporation rate of water on irradiation time for the different calcination temperature of $Ni(OH)_2/NF$ samples under 1 sun simulated light (100 mW cm²). The evaporation of water makes a blank contrast. (b) Corresponding solar efficiency of the above 6 samples.

Figure S11. (a) The step 2 of the synthesis process (optimize preparation condition 2) : the dependence of evaporation rate of water on irradiation time for the different calcination time of $Ni(OH)_2/NF$ samples under 1 sun simulated light (100 mW cm²). The evaporation of water makes a blank contrast. (b) Corresponding solar efficiency of the above 4 samples.

Figure S12. (a) The step 3 of the synthesis process (optimize preparation condition 3) : the dependence of evaporation rate of water on irradiation time for the different reduction time of NiO/NF samples under 1 sun simulated light (100 mW cm²). The evaporation of water makes a blank contrast. (b) Corresponding solar efficiency of the above 7 samples.

Figure S13. (a) The step 3 (Optimize preparation condition 4): the dependence of evaporation rate of water on irradiation time for the different reduction concentration of NiO/NF samples under 1 sun simulated light (100 mW cm²). The evaporation of water makes a blank contrast. (b) Corresponding solar efficiency of the above 7 samples.

Figure S14. (a-f) SEM images of the different reduction time (0.5 h-5.5 h) of NiO/NF Samples.

Figure S15. (a) The evaporation rate curve of seawater, H₂O, Ni-NiO_x/NF-S(seawater), Ni-NiO_x/NF-F(fresh water). (All experiments were conducted in ambient temperature of 15-18°C with a humidity of 18-20%), (b) the photothermal conversion efficiency of the seawater, H₂O, Ni-NiO_x/NF-S(seawater), Ni-NiO_x/NF-F(fresh water). Due to the room temperature for this measurement is lower than that for Figure S10-13 (RT=25-27°C). The environmental temperature is a critical factor for the water evaporation. The quantity of heat is same from the solar thermal conversion, the temperature change is the same according to the equation (Q = mC_p Δ T). Suppose that the Q keeps constant for the one sample, then Δ T should not change. That indicates the temperature of water surface will increase from 15 to 25°C in this case. In the case of Figure S10, the temperature will turn to 35 °C. But the water evaporation rate will slower at 25 °C than that at 35°C.

Sample	Light intensity (kw·m ⁻²)	Water evaporation rate (v,kg·m ⁻² ·h ⁻¹)	$\begin{array}{c} Conversion \\ Efficiency \\ (\eta,\%) \end{array}$	Classification of solar thermal materials	ب Reference
Al NP/AAM	1	0.92	58%	Metallic plasmonic material	Nat. Photonics $S1^1$
Au film/Airlaid paper	4.5	5.5	77%	Metallic plasmonic material	Adv. Mater. S2 ²
Black gold membranes	1	0.68	42.5%	Metallic plasmonic material	Nat. Commun. S3 ³
TiO ₂ /Au NP film/AAO	1			Metallic plasmonic material	ACS Appl. Mater. Interfaces S4 ⁴
Au/D-NPT/AAO	4	~5.2	90%	Metallic plasmonic material	<i>Sci. Adv.</i> S5 ⁵
Black Al-Ti-O membrane	1	1.23	77.5%	Metallic plasmonic material	Nano Energy S66
Ni-NiOx/NF	1	1.41	93.9	Metallic plasmonic material	This work
rGO/MWCNT	1	1.22	80.3%	Carbon-based material	J. Mater. Chem. A.S77
Carbon foam/ Exfoliated graphite	1	1.02	64%	Carbon-based material	Nat. Commun. S8 ⁸
Hierarchical graphene foam	1	1.46	>90%	Carbon-based material	Adv. Mater. S9 ⁹
RGO+bacterial nanocellulose aerogel	10	11.8	83%	Carbon-based material	Adv. Mater. S10 ¹⁰
3D-CG/GN	GN 1		85.6%	Carbon-based material	د. Adv. Mater.S11 ¹¹
Black TiO _X	1	0.8012	50.30%	Semiconductor material	Adv. Energy Mater. S12 ¹²
Black Titania nanocage	1	1.13	70.9%	Semiconductor material	ACS Appl. Mater. + Interfaces S13 ¹³
Cu ₇ S ₄ nanocrystal film	1.006 (Infrared lamp)		77.10%	Semiconductor material	Small S14 ¹⁴
Ti ₂ O ₃ NP/Cellulose membrane	1	1.32	83%	Semiconductor material	Adv. Mater. S16 ¹⁵
PPy/Coated SS	1	0.92	58%	Organic material	Adv. Mater. S17 ¹⁶
Bubble wrap/commercial spectrally selective coating on copper	1		64%	Composite material	ہ Nat. Energy S17 ¹⁷

Table S4 The comparison of photothermal evaporation performance of Ni-NiO_x/NF and the reported related photothermal materials

Reference

- 1. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu and J. Zhu, *Nat. Photonics*, 2016, **10**, 393.
- Y. Liu, S. Yu, R. Feng, A. Bernard, Y. Liu, Y. Zhang, H. Duan, W. Shang, P. Tao, C. Song and T. Deng, *Adv. Mater.*, 2015, 27, 2768-2774.
- 3. K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim and W. J. Padilla, *Nat. Commun.*, 2015, **6**, 10103.
- 4. Y. Liu, J. Lou, M. Ni, C. Song, J. Wu, N. P. Dasgupta, P. Tao, W. Shang and T. Deng, *ACS Appl. Mater. Interfaces*, 2016, **8**, 772-779.
- 5. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu and J. Zhu, *Sci. Adv.*, 2016, **2**, e1501227.
- L. Yi, S. Ci, S. Luo, P. Shao, Y. Hou and Z. Wen, *Nano Energy*, 2017, 41, 600-608.
- Y. Wang, C. Wang, X. Song, S. K. Megarajan and H. Jiang, J. Mater. Chem. A., 2018, 6, 963-971.
- 8. H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic and G. Chen, *Nat. Commun.*, 2014, **5**, 4449.
- H. Ren, M. Tang, B. Guan, K. Wang, J. Yang, F. Wang, M. Wang, J. Shan, Z. Chen, D. Wei, H. Peng and Z. Liu, *Adv. Mater.*, 2017, 29, 1702590.
- Q. Jiang, L. Tian, K.-K. Liu, S. Tadepalli, R. Raliya, P. Biswas, R. R. Naik and S. Singamaneni, *Adv. Mater.*, 2016, 28, 9400-9407.
- 11. Y. Li, T. Gao, Z. Yang, C. Chen, W. Luo, J. Song, E. Hitz, C. Jia, Y. Zhou, B. Liu, B. Yang and L. Hu, *Adv Mater.*, 2017, **29**, 1700981.
- M. Ye, J. Jia, Z. Wu, C. Qian, R. Chen, P. G. O'Brien, W. Sun, Y. Dong and G. A. Ozin, *Adv. Energy Mater.*, 2017, 7, 1601811.
- 13. G. Zhu, J. Xu, W. Zhao and F. Huang, *ACS Appl. Mater. Interfaces*, 2016, **8**, 31716-31721.
- 14. C. Zhang, C. Yan, Z. Xue, W. Yu, Y. Xie and T. Wang, *Small*, 2016, **12**, 5320-5328.
- J. Wang, Y. Li, L. Deng, N. Wei, Y. Weng, S. Dong, D. Qi, J. Qiu, X. Chen and T. Wu, *Adv.Mater.*, 2017, 29, 1603730.
- 16. L. Zhang, B. Tang, J. Wu, R. Li and P. Wang, Adv. Mater., 2015, 27, 4889-4894.
- 17. G. Ni, G. Li, Svetlana V. Boriskina, H. Li, W. Yang, T. Zhang and G. Chen, *Nat. Energy*, 2016, **1**, 16126.