Supporting information

Designing an asymmetric device based on graphene wrapped yolk-double

shell NiGa₂S₄ hollow microspheres and graphene wrapped FeS₂-FeSe₂ core-

shell cratered spheres with outstanding energy density

Akbar Mohammadi Zardkhoshoui¹, Saied Saeed Hosseiny Davarani^{1*}, Mona Maleka Ashtiani², Morteza Sarparast².

¹Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.

²Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA.

*Corresponding author, Tel: +98 21 22431661; Fax: +98 21 22431661.

E-mail address: <u>ss-hosseiny@sbu.ac.ir</u> (S.S.H. Davarani)

Figure S1. XRD pattern of NiGa-glycerate precursor

Figure S2. Raman spectrum of GW@YDSNGSHM sample

Figure S3. FE-SEM image of NiGa-glycerate precursor

Figure S4. Elemental mapping image of YDSNGSHM sample

Figure S5. Large scale TEM image of YDSNGSHM sample

Figure S6. XRD pattern of FeS₂ sample.

Figure S8. Raman spectrum of GW@FeS2-FeSe2-CSS sample.

Figure S9. FE-SEM image of FeS_2 sample.

 $Figure \ S10. \ Elemental \ mapping \ image \ of \ FeS_2-FeSe_2-CSS \ sample.$

Figure S11. Large scale TEM image of FeS₂-FeSe₂-CSS sample.

Figure S12. CV plots of GW@YDSNGSHM, YDSNGSHM, and bare nickel foam electrodes

Figure S13. (a) CV plots of YDSNGSHM electrode at different scan rates. (b) CD plots of YDSNGSHM electrode at various current densities.

Figure S14. Nyquist plots of GW@YDSNGSHM and YDSNGSHM electrodes.

Figure S15. (a) FE-SEM image of YDSNGSHM electrode after 5000 cycles. (b) FE-SEM image of GW@YDSNGSHM electrode after 5000 cycles

Figure S17. (a) CV plots of FeS₂-FeSe₂-CSS electrode at different scan rates. (b) CD plots of FeS₂-FeSe₂-CSS electrode at various current densities.

Figure S18. Nyquist plots of GW@FeS2-FeSe2-CSS and FeS2-FeSe2-CSS electrodes.

Figure S19. FE-SEM image of FeS₂-FeSe₂-CSS electrode after 5000 cycles (d) FE-SEM image of GW@FeS₂-FeSe₂-CSS electrode after 5000 cycles.

Sample	Capacitance (F g ⁻¹)	Cycles, retention	Operating potential window	Reference
CNT@Fe2O3	300	1000, 60 % (3 E)	-1 to 0	1
Fe ₂ O ₃ @GF	527.7	-	-1 to 0	2
FeSe ₂	304	-	-1 to 0	3
GA-FeS ₂	313.6	2000,88.2	9 to3	4
FeS ₂	317.8	1000, 81.1	-1 to 0	5
Fe ₂ O ₃ /VACNTs	248	5000, 91.3% (3 E) 5000, 92.7% (2 E)	-1.2 to 0	6
GW@FeS2-FeSe2- CSS	634.6	5000, 90.7	-1.2 to 0	This work

Table S2. Comparison of the electrochemical performance of GW@YDSNGSHM electrode in three- and two-electrode systems with other previously reported electrodes.

Composition	Capacitance 3- and 2-electrode (F g ⁻¹)	Cycles, retention 2 and 3 electrode	ED (W h kg ⁻¹) 2 Electrode	Reference
NiCo2S4 NSNW	1777 (3 E)	3000, 83 % (3 E)	-	7
Nickel-cobalt sulfide	1304 (3 E) 92 (2 E)	6000, 93.5 % (3 E) 6000, 79.1% (2 E)	41.4	8
Nickel-cobalt sulfide	1036 440 (3 E) 119.1 (2 E)	2000, 87% (3 E) 10000, 87.6% (2 E)	42.3	9
Nickel-cobalt sulfide	1492 (3 E) 304 (2 E)	10000, 76% (3 E) 20000, 91% (2 E)	48.4	10
NCS-HL	1682 (3 E) 190 (2 E)	3000, 90.1 (3 E) 5000, 82.88% (2 E)	49.38	11
PCs/NiC02S4	605.2 (3 E) 190 (2 E)	5000, 91.3% (3 E) 5000, 92.7% (2 E)	23.3	12
GW@YDSNGSHM	2868.40 (3 E) 352.30 (2 E)	5000, 95.7 (3 E) 5000, 93.9 (2 E)	158.53	This work

References

[1] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, and Z. Tang, J. Mater. Chem. A

2015, **3**, 20927-20934.

[2] S. Kumar, G. Saeed, N. H. Kim, and J. H. Lee, J. Mater. Chem. A 2018, 6, 7182-7193.

[3] C. Ji, F. Liu, L. Xu, and S. Yang, J. Mater. Chem. A 2017, 5, 5568-5576.

[4] L. Pei, Y. Yang, H. Chu, J. Shen, and M. Ye, Ceram. Int. 2016, 42, 5053-5061.

[5] J. Chen, X. Zhou, C. Mei, J. Xu, S. Zhou, and C.-P. Wong, *Electrochim. Acta* 2016, **222**, 172-176.

[6] W. Zhang, B. Zhao, Y. Yin, T. Yin, J. Cheng, K. Zhan, Y. Yan, J. Yang, and J. Li, *J. Mater. Chem. A* 2016, **4**, 19026-19036.

[7] X. Chen, D. Chen, X. Guo, R. Wang, and H. Zhang, ACS applied materials & interfaces, 2017,

9, 18774-18781.

[8] X. Li, Q. Li, Y. Wu, M. Rui, and H. Zeng, ACS applied materials & interfaces 2015, 7,

19316-19323.

[9] L. Shen, L. Yu, H. B. Wu, X.-Y. Yu, X. G. Zhang, and X. W. Lou, *Nat. Commun.* 2015, 6, 7694.

[10] L. Su, L. Gao, Q. Du, L. Hou, X. Yin, M. Feng, W. Yang, Z. Ma, and G. Shao, *ACS Sustainable Chem. Eng.*, 2017, **5**, 9945-9954.

[11] S. Zhao, Z. Yang, W. Xu, Q. Zhang, X. Zhao, and X. Wen, *Electrochim. Acta* 2019, **297**, 334-343.

[12] M. Yu, Y. Han, Y. Li, J. Li, and L. Wang, Appl. Surf. Sci. 2019, 463, 1001-1010.