Supporting Information

Experimental Section

Materials and Chemicals: 2-methylimidazole ($C_4H_6N_2$, 99% purity), ammonium tetrathiomolybdate ((NH_4)₂MoS₄, 99.97% purity), cobalt nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, \geq 98% purity) and thioacetamide (CH_3CSNH_2 , \geq 99.0%) were supplied by Sigma-Aldrich. All materials were used without further purification.

Synthesis of 1D Co-MOF Nanorod Arrays (Co-MOF NRs): Firstly, a precursor solution for growing ZIF-67 was prepared by dissolving 2-methylimidazole (0.4 M) and cobalt nitrate hexahydrate (25×10^{-3} M), respectively, in 40 mL deionized water (DI water), and then mixing the two solutions together. Immediately, a piece of acid-treated CC substrate (2.5 cm \times 7 cm) was immersed into the solution. After reaction for 4 h, the sample was taken out, washed with DI water. Another precursor solution was prepared following the above procedure, after which the sample was immersed again for another 4 hours. Then, the sample was washed with DI water and dried overnight in vacuum.

Synthesis of MoS_2/CoS_2 NRs: 0.02 g (NH₄)₂MoS₄ was added into 30 mL DI water to form a transparent solution. A piece of Co-MOF/CC ($^{2.5}$ cm × $^{2.5}$ cm) was immersed into the above solution and then transferred into a Teflon-lined stainless steel autoclave. After that, hydrothermal synthesis was carried out at 200 °C for 18 h, and then naturally cooled down to room temperature. The obtained sample was washed with DI water and dried at 60 °C in vacuum. To increase the crystallinity and remove the residual organic polymer in MOF, post annealing was conducted at 500 °C in Ar atmosphere for 2h.

Synthesis of MoS₂/CoS₂ NTs: A piece of MoS₂/CoS₂ nanorods on CC was immersed into an ethanol solution (30 mL) containing 0.18 g thioacetamide. After stirring for 15 min, the solution together with the sample was transferred into a Teflon-lined stainless steel autoclave for hydrothermal synthesis at 90 °C for 3 h. After the reaction, the samples were taken out, washed with ethanol and dried in vacuum overnight, followed by a 500 °C annealing in Ar for 2 h.

Synthesis of CoS₂ NRs: The synthesis of CoS₂ was performed by following the previously reported procedure.¹ Specifically, 0.18 g thioacetamide was added into 30 mL ethanol to form a transparent solution. A piece of Co-MOF NRs (2.5 cm×2.5 cm) was immersed into the above solution and transferred into a Teflon-lined stainless autoclave. The reaction was carried out at 90 °C for 3 h. The obtained sample was washed with DI water and dried at 60 °C in vacuum. After that, the sample was further annealed at 350 °C in Ar atmosphere for 2h.

*Synthesis of MoS*₂ *Nanosheets:* A piece of clean CC was immersed into an aqueous solution (30 mL) containing 0.02 g (NH_4)₂MoS₄. After hydrothermal reaction at 200 °C for 18 h, the sample was taken out, washed with DI water and dried at 60 °C in vacuum.

Synthesis of Pt/C Electrode: Commercial Pt/C (10wt.%, Sigma-Aldrich, 5mg) was well-dispersed in dilute Nafion alcohol solution (1750 μ L of ethanol, 200 mL of water and 50 μ L of Nafion) to form a homogenous ink. Then the ink (10 μ L) was drop casted onto glassy carbon electrode with a diameter of 3 mm (catalyst loading weight ~0.35 mg cm⁻²).

Materials Characterization: Scanning electron microscopy (SEM) imaging was performed using a SUPRA 40 ZEISS. Transmission electron microscopy (TEM) carried out using Titan 80/300 S/TEM operated at 200 kV. The diffraction patterns were collected using Bruker AXS XRD (Cu K α , I = 0.154 nm). X-ray photoelectron spectroscopy (XPS) measurements were performed using Thermo Scientific Thetaprobe XPS system (monochromatic Al K $_{\alpha}$ source, 40 eV pass energy). The carbon C 1s peak at 284.5 eV was used for charge correction. Raman measurements with excitation laser line of 514 nm were performed using LABRAM-HR Raman spectrometer (Horiba Jobin Yvon). The Si peak at 520.7 cm⁻¹ was used for calibration. Zeta potential was measured using Malvern Zetasizer Nano-ZS (Worcestershire, UK). High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) was carried out on an aberration-corrected JOEL ARM-200F equipped with a cold field emission gun, operating at 200 kV, and an Advanced STEM Corrector (ASCOR) probe corrector. Induced coupled plasma-optical emission spectrometer (ICP-OES) were conducted using Perkin Elmer Optima 5300DV.

Electrochemical Measurements: All the electrochemical measurements were conducted on electrochemical workstation (PARSTAT MC) in a three-electrode mode. In 1 M KOH and PBS solution, as-fabricated samples, Hg/HgO (1M KOH) and graphite paper were used as the working electrode, reference electrode and counter electrode, respectively. In 0.5 M H₂SO₄ solution, saturated calomel electrode (SCE) was used as reference electrode. Potentials *vs.* RHE were calculated via the equation of $E_{vsRHE} = E_{vsHg/HgO} + 0.059 \times PH + 0.098$ or $E_{vsRHE} = E_{vsSCE} + 0.059 \times PH + 0.241$. All HER polarization curves were recorded at a low scan rate of 5 mV s⁻¹. Before recording, the potentials of all materials were scanned for 50 cycles in the range of -0.6 to 0 V *vs.* REH until a stable polarization curve was obtained. All polarization curves were corrected using 85% iR compensation unless otherwise noted. Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 10^{5} -0.1 mHz with an AC amplitude of 10 mV at open circuit potential. Stability of the catalyst was evaluated by linear sweep voltammetry scanning 5000 cycles (LSV, sweep rate, 50 mV s⁻¹) and chronopotentiometric measurements under the same configuration with 85% iR compensation. During the chronopotentiometric measurement, the electrolyte was replaced every 24 h. Cyclic

voltammetry method was used to determine the electrochemical double-layer capacitance (C_{dl}). Electrochemically active surface area (ECSA) could be evaluated from the slope of the plot of the charging current versus scan rate, which was proportional to C_{dl} . To get the Tafel plot, the polarization curves were plotted as overpotential vs. log current density.

Calculation Method: All the calculations were carried out using DFT with the generalized Perdew-Burke-Ernzerhof (PBE)² and the projector augmented-wave (PAW) pseudopotential plane-wave method³ as implemented in the VASP code.⁴ For the PAW pseudopotential, a 10×10×1 Monkhorst-Pack (MP) *k*-point grid was used for CoS₂ (200) surface optimization calculations with a vacuum separation of ~15 Å and a plane-wave basis set with an energy cut-off of 500 eV with considering the spin polarization. Good convergence was obtained with these parameters and the total energy was converged to 1.0×10^{-6} eV per atom. The optimized (200) surface unit cell model was extended to $2 \times 2 \times 1$ supercells for H adsorption and water dissociation studies. We carried out calculations with the van der Waals (vdW) correction by employing optPBE-vdW functional⁵ using a $2 \times 2 \times 1$ MP *k*-point grid. The nudged elastic band (NEB)⁶ was used to analyse the energy barrier of water dissociation at the MoS₂/CoS₂ hybrid catalysts.

Figure S1. SEM images of (a-c) Co-MOF NRs on CC, and (d-f) MoS₂/CoS₂ NRs on CC.

Figure S2. XRD pattern of 1D Co-MOF NRs. All the labeled peaks match well with the pattern of ZIF-L reported in literature.⁷

Figure S3. The XRD patterns of the MoS_2/CoS_2 NTs, CoS_2 , and MoS_2 . To be noted, no diffraction peak of MoS_2 in CoS_2/MoS_2 NTs is observed due to the small amount of MoS_2 nanosheets anchored on the CoS_2 nanotubes and poorly crystallized MoS_2 nanosheets.

Figure S4. (a,b) Low-resolution and (c) high-resolution TEM images of the MoS_2/CoS_2 NRs, showing the interlayer space of 0.72 nm between MoS_2 layers.

Figure S5. (a,b) SEM images of bare MoS_2 nanosheets grown on CC, (c) TEM image of MoS_2 nanosheets, and (d) high-resolution TEM images of MoS_2 nanosheets. The inset shows the interlayer space of 0.68 nm.

Figure S6. Zeta potential intensity distributions of MoS_2 , CoS_2 , MoS_2/CoS_2 NRs, MoS_2/CoS_2 NTs and MOF nanoparticles with particle concentration of 100 µg mL⁻¹ in distilled water.

Figure S7. EDS and ICP-OES results of (a) Co-MOF and (b) MoS₂/CoS₂ NTs. Note that the Mo signal overlaps with S. The ICP-OES shows that the nitrogen concentration is reduced from 25.55 wt.% in Co-MOF to 0.81 wt.% in MoS₂/CoS₂ NTs, indicating the almost negligible content of the Co-MOF residues.

Figure S8. (a) N_2 adsorption/desorption isotherms and (b) corresponding pore-size distribution of Co-MOF, $MoS_2/CoS_2 NRs$ and $MoS_2/CoS_2 NTs$.

Figure S9. (a) HAADF-STEM images of MoS_2/CoS_2 NTs and (b,c) corresponding intensity profiles along the a-a line (b) and b-b line (c).

Figure S10. Benchmark of MoS₂-based catalysts for HER (a) in alkaline and (b) acid media.

Figure S11. Electrocatalytic performance tested in 1M PBS. (a) LSV polarization curves of MoS_2/CoS_2 NTs, MoS_2/CoS_2 NRs, CoS_2 , MoS_2 , Pt/C and CC. (b) The corresponding Tafel plots. (c) LSV polarization curves of MoS_2/CoS_2 NTs recorded initially and after 2000 sweeps. (d) The chronopotentiometric curves of MoS_2/CoS_2 NTs recorded at current density of 10 mA cm⁻² for 24 hours.

Figure S12. EIS spectra of the $MoS_2/CoS_2 NTs$, $MoS_2/CoS_2 NRs$, MoS_2 and CoS_2 in (a) 0.5 M H₂SO₄ and (b) 1 M KOH electrolytes.

Figure S13. Cyclic voltammetry of (a) MoS_2/CoS_2 NTs, (b) MoS_2/CoS_2 NRs, (c) CoS_2 , and (d) MoS_2 at different scan rate: 4, 8, 12, 16, 20 and 50 mV s⁻¹ in 0.5 M H₂SO₄. (e) Corresponding capacitive currents at 0.8 V vs. SCE as a function of scan rates for MoS_2/CoS_2 NTs, MoS_2/CoS_2 NRs, CoS_2 and MoS_2 in 0.5 M H₂SO₄.

Figure S14. XPS survey spectra of the MoS₂/CoS₂ NTs.

Figure S15. Raman spectra of MoS₂ and MoS₂/CoS₂ NTs.

Figure S16. The optimized hybrid MoS₂/CoS₂ models. (a) MoS₂ nanoribbon with S atoms terminal along y-direction. (b) MoS₂ nanoribbon with S atoms terminal along x-direction. (c) MoS₂ nanoribbon with Mo atoms terminal along y-direction. (d) MoS₂ nanoribbon with Mo atoms terminal along x-direction. The dark blue, yellow and grey balls denote Co, S and Mo atoms, respectively.

Figure S17. Calculated charge density difference between CoS₂ and MoS₂. Here, the green and the light red represent electrons depletion and accumulation, respectively. The dark blue, yellow and grey balls denote Co, S and Mo atoms, respectively.

Figure S18. (a) Water molecule adsorption at the most energetic state on the surface of MoS₂/CoS₂. (b) The most stable configuration of hydroxyl adsorbed at MoS₂/CoS₂. The dark blue, yellow and grey, red and cyan balls represent Co, S, Mo, O and H atoms, respectively.

Figure S19. The optimized model of H adsorption at MoS_2/CoS_2 . The dark blue, yellow and grey, cyan balls represent Co, S, Mo and H atoms, respectively.

References

- 1 C. Guan, X. Liu, A. M. Elshahawy, H. Zhang, H. Wu, S. J. Pennycook, J. Wang, *Nanoscale Horiz.*, 2017, **2**, 342-348.
- 2 J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 3 P.E. Blöchl, Phys. Rev. B, 1994, 50, 17953.
- 4 G. Kresse, J. Furthmüller, *Comput. Mater. Sci.*, 1996, **6**, 15-50.
- 5 J. Klimeš, D.R. Bowler, A. Michaelides, *Phys. Rev. B*, 2011, **83**, 195131.
- 6 G. Mills, H. Jónsson, G.K. Schenter, Surf. Sci., 1995, 324, 305-337.
- 7 J. Zhang, T. Zhang, D. Yu, K. Xiao, Y. Hong, CrystEngComm, 2015, 17, 8212-8215.
- 8 Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.-M. Cheng, B. Liu, ACS Nano, 2018, 12, 4565-4573.
- 9 Z. Zhu, H. Yin, C.T. He, M. Al-Mamun, P. Liu, L. Jiang, Y. Zhao, Y. Wang, H.G. Yang, Z. Tang, Adv. Mater., 2018, 30, 1801171.
- 10 J. Jiang, M. Gao, W. Sheng, Y. Yan, Angew. Chem. Int. Ed., 2016, 128, 15466-15471.
- 11 Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan, L. Yang, Q. Gao, ACS Catal., 2017, 7, 2357-2366.
- 12 X. Zhang, Y. Liang, Adv. Sci., 2018, 5, 1700644.
- 13 X.Y. Yu, Y. Feng, Y. Jeon, B. Guan, X.W. Lou, U. Paik, Adv. Mater., 2016, 28, 9006-9011.
- 14 J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M.K. Leung, S. Yang, Joule, 2017, 1, 383-393.
- 15 J. Bai, T. Meng, D. Guo, S. Wang, B. Mao, M. Cao, ACS Appl. Mater. Interfaces, 2018, 10, 1678-1689.
- 16 J. Deng, H. Li, S. Wang, D. Ding, M. Chen, C. Liu, Z. Tian, K. Novoselov, C. Ma, D. Deng, Nat. Commun., 2017, 8, 14430.
- 17 J. Zhang, S. Liu, H. Liang, R. Dong, X. Feng, Adv. Mater., 2015, 27, 7426-7431.
- 18 X. Geng, W. Sun, W. Wu, B. Chen, A. Al-Hilo, M. Benamara, H. Zhu, F. Watanabe, J. Cui, T.-p. Chen, *Nat. Commun.*, 2016, **7**, 10672.
- 19 Y. Guo, L. Gan, C. Shang, E. Wang, J. Wang, Adv. Funct. Mater., 2017, 27, 1602699.
- 20 J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang, L. Li, S. Chen, J. Mater. Chem. A, 2015, 3, 22886-22891.
- 21 R. Ye, P. del Angel-Vicente, Y. Liu, M.J. Arellano-Jimenez, Z. Peng, T. Wang, Y. Li, B.I. Yakobson, S.H. Wei, M.J. Yacaman, *Adv. Mater.*, 2016, **28**, 1427-1432.
- 22 D. Kong, Y. Wang, Y. Von Lim, S. Huang, J. Zhang, B. Liu, T. Chen, H.Y. Yang, *Nano Energy*, 2018, **49**, 460-470.
- 23 W. Xiao, P. Liu, J. Zhang, W. Song, Y.P. Feng, D. Gao, J. Ding, Adv. Energy Mater., 2017, 7, 1602086.