## **Supporting Information**

## Highly Selective Electrochemical CO<sub>2</sub> Reduction to

## CO Using a Redox-Active Couple on Low-Crystallinity

## Mesoporous ZnGa<sub>2</sub>O<sub>4</sub> Catalyst

Meiming Zhao<sup>a</sup>, Yaliu Gu<sup>a</sup>, Ping Chen<sup>a</sup>, Zhenyu Xin<sup>a</sup>, Heng Zhu<sup>a</sup>, Bing Wang<sup>\*a</sup>, Kai Zhu<sup>\*b</sup>, Shicheng Yan<sup>\*a</sup> and Zhigang Zou<sup>ac</sup>

<sup>a</sup> Jiangsu Key Laboratory of Artificial Functional Materials,Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China. Email: yscfei@nju.edu.cn, bingwang@nju.edu.cn

<sup>b</sup> School of Information Science and Engineering, Nanjing University Jinling College, No. 8, Xuefu Road, Nanjing, Jiangsu 210089, People's Republic of China. Email: zhukai@jlxy.nju.edu.cn

<sup>c</sup> Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, No. 22, Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China



Figure S1. XRD pattern of NaGaO<sub>2</sub>.



Figure S2. XRD patterns of H-ZnGa<sub>2</sub>O<sub>4</sub> and L-ZnGa<sub>2</sub>O<sub>4</sub>.



**Figure S3.** Nitrogen adsorption-desorption isotherms of a) L-ZnGa<sub>2</sub>O<sub>4</sub> and b) H-ZnGa<sub>2</sub>O<sub>4</sub>. Pore diameter of c) L-ZnGa<sub>2</sub>O<sub>4</sub> and d) H-ZnGa<sub>2</sub>O<sub>4</sub>.



Figure S4. CO<sub>2</sub> adsorption capacity for the L-ZnGa<sub>2</sub>O<sub>4</sub>, H-ZnGa<sub>2</sub>O<sub>4</sub>.



**Figure S5.** Polarization curves on bare titanium sheet in  $N_2$ - (blue line) or  $CO_2$ -saturated (red line) 0.1 M KHCO<sub>3</sub> solution.



Figure S6. H<sub>2</sub> faradaic efficiency of a) L-ZnGa<sub>2</sub>O<sub>4</sub> and b) H-ZnGa<sub>2</sub>O<sub>4</sub>.



**Figure S7.** Partial current density of CO for L-ZnGa<sub>2</sub>O<sub>4</sub> and H-ZnGa<sub>2</sub>O<sub>4</sub>.



Figure S8. Redox waves of L-ZnGa<sub>2</sub>O<sub>4</sub> in N<sub>2</sub> and CO<sub>2</sub>-saturated 0.1 M KHCO<sub>3</sub> solution.



**Figure S9.** Oxidation peak of a) commercial ZnO, b) L-ZnGa<sub>2</sub>O<sub>4</sub> and commercial Ga<sub>2</sub>O<sub>3</sub> in CO<sub>2</sub>-saturated 0.1 M KHCO<sub>3</sub> solution.



Figure S10. Photograph of ZnO electrode and  $ZnGa_2O_4$  electrode after cyclic voltammogram scanning.



Figure S11. XPS spectra of H-ZnGa<sub>2</sub>O<sub>4</sub> at -1.03V and -1.2 V. a) Zn 2p, b) Ga 3d.



**Figure S12.** Cyclic voltammogram of the L-ZnGa<sub>2</sub>O<sub>4</sub> in a) CO<sub>2</sub>-saturated KHCO<sub>3</sub> solution. b) CO<sub>2</sub>saturated KCl solution. c) 0.1 M CO<sub>2</sub>-saturated KHCO<sub>3</sub> solution with different pH value. The inset shows the linear relationship between the peak potential and the concentration of a) KHCO<sub>3</sub> solution, b) KCl solution, c) protons in 0.1 M KHCO<sub>3</sub> solution.



**Figure S13.** Ultraviolet-visible (UV-vis) absorption spectrum of a) L-ZnGa<sub>2</sub>O<sub>4</sub> after and before reaction, b) commercial ZnO.



Figure S14. EPR for L-ZnGa<sub>2</sub>O<sub>4</sub> and H-ZnGa<sub>2</sub>O<sub>4</sub>.



**Figure S15.** a) High-magnification TEM image of L-ZnGa<sub>2</sub>O<sub>4</sub> after reaction. (insert: SAED pattern of porous ZnGa<sub>2</sub>O<sub>4</sub>) and b) H-ZnGa<sub>2</sub>O<sub>4</sub> after reaction. (insert: SAED pattern of nonporous ZnGa<sub>2</sub>O<sub>4</sub>).

|                        | Electrolyte                           | Main    | Potential (V) | Faradaic Efficiency (%) | Reference |
|------------------------|---------------------------------------|---------|---------------|-------------------------|-----------|
|                        |                                       | Product | vs. RHE       |                         |           |
| $Zn^{2+}/Zn^{\delta+}$ | 0.1 M KHCO <sub>3</sub>               | CO      | -0.8          | 96                      | This work |
| Zn Dendrites           | 0.5 M NaHCO <sub>3</sub>              | CO      | -1.1          | 79                      | [1]       |
| Zn nanoplates          | $0.5 \text{ M} \text{ NaHCO}_3$       | CO      | -0.93         | 57                      | [2]       |
| Zn nanoplates          | 0.5 M NaCl                            | CO      | -1.09         | 93                      | [2]       |
| Hexagonal Zn           | 0.5 M KHCO <sub>3</sub>               | СО      | -0.95         | 85.4                    | [3]       |
| Hexagonal Zn           | 0.5 M KCl                             | СО      | -1.05         | 95.4                    | [3]       |
| Reduced ZnO            | 0.25 M K <sub>2</sub> SO <sub>4</sub> | СО      | -1.2          | 92                      | [4]       |
| Zn nanosheets          | 0.5 M NaHCO <sub>3</sub>              | CO      | -1.13         | 86                      | [5]       |
| Zn nanoparticle        | 0.5 M NaHCO <sub>3</sub>              | HCOO-   | -1.93         | 87.1                    | [6]       |

**Table S1.** Comparison of  $CO_2$  electrochemical reduction performances on different Zn catalysts.

[1] J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore and F. Jiao, ACS Catal., 2015, 5, 4586.

[2] F. J. Quan, D. Zhong, H. C. Song, F. L. Jia and L. Z. Zhang, J. Mater. Chem. A, 2015, 3, 16409.

[3] D. H. Won, H. Shin, J. Koh, J. Chung, H.S. Lee, H. Kim and S. I. Woo, Angew. Chem. Int. Ed., 2016, 55, 9297.

[4] X. L. Jiang, F. Cai, D. F. Gao, J. H. Dong, S. Miao, G. X. Wang and X. H. Bao, *Electrochemistry Communications*, 2016, **68**, 67.

[5] T. T. Zhang, X. F. Li, Y. L. Qiu, P. P. Su, W. B. Xu, H. X. Zhong and H. M. Zhang, *Journal of Catalysis*, 2018, **357**, 154.

[6] T. T. Zhang, H. X. Zhong, Y. L. Qiu, X. F. Li and H. M. Zhang, J. Mater. Chem. A, 2016, 4, 16670.

**Table S2.** The pH of CO<sub>2</sub>-saturated KHCO<sub>3</sub>, KCl electrolyte with different concentrations.

| Electrolyte                                  | Concentration (M) | рН   |
|----------------------------------------------|-------------------|------|
| CO <sub>2</sub> -saturated KHCO <sub>3</sub> | 0.1               | 6.82 |
| CO <sub>2</sub> -saturated KHCO <sub>3</sub> | 0.3               | 7.23 |
| CO <sub>2</sub> -saturated KHCO <sub>3</sub> | 0.5               | 7.45 |
| CO <sub>2</sub> -saturated KHCO <sub>3</sub> | 0.7               | 7.62 |
| CO <sub>2</sub> -saturated KCl               | 0.1               | 3.98 |
| CO <sub>2</sub> -saturated KCl               | 0.3               | 4.03 |
| CO <sub>2</sub> -saturated KCl               | 0.5               | 4.05 |
| CO <sub>2</sub> -saturated KCl               | 0.7               | 3.91 |
|                                              |                   |      |