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Figure S1. 3D LSCM images of PDA/PSS JMs constructed by varing co-deposition time (from 

15 min to 120 min) and thus with different hydrophilization depths (from 7.2 μm to 30.0 μm) 

wetted by the rhodamine B solution. 

 

 

Figure S2. FT-IR/ATR spectra of (a) PDA/PDDA JMs and (b) PDA/PSS JMs for both the 

hydrophilic side and the hydrophobic side with different co-deposition periods. 
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Figure S3. XPS spectra of (a) PDA/PDDA JMs and (b) PDA/PSS JMs for both the hydrophilic 

side and the hydrophobic side. 
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Figure S4. WCA on the hydrophilic side and the hydrophobic side of PDA/PSS JMs with 

different hydrophilization depths. 
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Figure S5. SEM images of the hydrophilic side of (a) PDA/PDDA JMs and (b) PDA/PSS JMs 

with different hydrophilization depths. 
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Table S1. Average pore diameter and porosity of nascent PPMM and JMs with different 

hydrophilization depths. 

Samples 

Bulk Surface 

Average pore 
diameter (nm) 

Porosity (%) 
Average pore 
diameter (nm) 

Porosity (%) 

Nascent PPMMs 245.4 73.2 190.2 30.7 

PDA/PDDA JMs (7.8 μm) --- --- 157.3 28.5 

PDA/PDDA JMs (12.1 μm) 262.3 73.2 185.5 37.1 

PDA/PDDA JMs (14.3 μm) 276.3 73.4 236.9 39.8 

PDA/PDDA JMs (16.9 μm) --- --- 167.5 31.0 

PDA/PDDA JMs (20.0 μm) --- --- 178.2 31.1 

PDA/PDDA JMs (27.3 μm) 260.0 73.0 147.7 27.4 

PDA/PSS JMs (7.2 μm) --- --- 197.4 36.7 

PDA/PSS JMs (10.8 μm) 242.0 72.8 174.7 29.9 

PDA/PSS JMs (16.0 μm) 250.7 73.1 189.9 36.6 

PDA/PSS JMs (18.8 μm) --- --- 208.0 39.2 

PDA/PSS JMs (22.5 μm) --- --- 243.9 39.4 

PDDA/PSS JMs (30.0 μm) 273.2 73.4 179.9 24.1 
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Figure S6. Dynamic UOCA and oil drop CD on the hydrophilic side of PDA/PSS JMs with 

different hydrophilization depths. 

 

 

Figure S7. LSCM images of emulsion separation processes using PDA/PSS JMs with 

different hydrophilization depths: (a) H1 = 0 μm (neat PPMM), (b) H1 = 10.8 μm, (c) H1 = 30.0 

μm. The oil-in-water emulsions are stabilized by hexadecyl trimethyl ammonium bromide 

(CTAB) and dyed by Nile red. 
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Figure S8. Optical microscopic photos (left) and DLS graph (right) of (a) Tween 80 stabilized 

and (b) CTAB stabilized emulsions. The oil contents are 100 mg/mL and 15 mg/mL for (a) and 

(b), respectively. 

 

 

 

 

Figure S9. DLS graphs of feed after separation for (a) PDA/PDDA JMs toward SDS stabilized 

emulsions, (b) PDA/PSS JMs toward CTAB stabilized emulsions, (c) PDA/PDDA JMs toward 

Tween 80 stabilized emulsions, and d) PDA/PSS JMs toward Tween 80 stabilized emulsions. 

The corresponding DLS graphs of filtrate after separation for (a), (b), (c) and (d) are shown in 

(e), (f), (g) and (h). 

 

20 30 40 50 60 70

0

10

20

30

 

 

N
u

m
b

e
r 

(%
)

Droplet size (nm)

50 100 150 200 250

0

10

20

30

 

 

 

Droplet size (nm)

N
u

m
b

e
r 

(%
)

(a)

(b)

50 μm

50 μm

25 50 75 100 125 150
0

10

20

30

Filtrate

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

30 60 90 120 150
0

10

20

30

Feed after separation 

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

25 50 75 100 125 150
0

10

20

30

Filtrate

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

5 10 15 20 25
0

10

20

30

Feed after separation 

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

25 50 75 100 125 150
0

10

20

30

Filtrate

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

30 60 90 120 150
0

10

20

30

Feed after separation 

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

25 50 75 100 125 150
0

10

20

30

Filtrate

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

5 10 15 20 25
0

10

20

30

Feed after separation 

  

 

 
Size (d. nm)

N
u

m
b

e
r 

(%
)

(a) (b) (c) (d)

(e) (f) (g) (h)



S9 

 

 

 

Figure S10. Optical microscopic images of feed after separation for (a) PDA/PDDA JMs 

toward SDS stabilized emulsions, (b) PDA/PSS JMs toward CTAB stabilized emulsions, (c) 

PDA/PDDA JMs toward Tween 80 stabilized emulsions, and (d) PDA/PSS JMs toward Tween 

80 stabilized emulsions. The corresponding optical microscopic images of filtrate after 

separation for (a), (b), (c) and (d) are shown in (e), (f), (g) and (h). 

 

 

 

 

 

 

Table S2. Purities of collected oils using different Janus membranes after separation. 

Sample Oil purity (%) 

PDA/PDDA JM (H1 = 12.1μm) / SDS emulsion 98.8 

PDA/PSS JM (H1 = 10.8 μm) / CTAB emulsion 99.9 

PDA/PDDA JM (H1 = 12.1 μm) / Tween 80 emulsion 99.6 

PDA/PSS JM (H1 = 10.8 μm) / Tween 80 emulsion 99.5 
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Figure S11. Photographs of petroleum ether separation status at time t=0, 10, 30 min for oil-

in-water emulsions stabilized by (a) SDS using PDA/PDDA JMs (H1 = 12.1 μm) and by (b) 

CTAB using PDA/PSS JMs (H1 = 10.8 μm). The optical microscopic images and DLS graphs 

of feed before and after separation as well as filtrate after separation are shown 

correspondingly. 
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Figure S12. Comparison of separation data for oil-in-water emulsions stabilized by different 

surfactants using PDA/PDDA or PDA/PSS JMs with ~10 μm of hydrophilization depth. 

 

 

Figure S13. Surface zeta potential of the hydrophilic side as a function of the hydrophilization 
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adhere onto the membrane surface and inside wall of the pores. However, the deposition of 

the neat PDA aggregates cannot be accelerated due to their neutral and large-sized profiles. It 

means that the electric field-accelerating deposition of charged PDA/electrolyte clusters is 

dominant during the first 30 min until an equilibrium is reached. The deposition of neat PDA 

aggregates, however, is still in progress afterwards. Such difference in the kinetics of 

deposition thus causes a maximum value of the surface zeta potential when the membrane 

was deposited for 30 min (Figure S13). Therefore, those Janus membranes with the most 

enriched surface charge (H1 ≈ 10 μm) significantly facilitate the deemulsification process, 

exhibiting excellent separation performances mentioned above. Further, the efficiency of 

emulsion separation becomes depressed with thickening the hydrophilic depth because the 

directional oil delivery is hindered gradually. 

 

 

Figure S14. Oil flux and recovery ratio evolutions under repeated cycles when PDA/PSS JMs 

(H1 = 10.8 μm) were used to separate the CTAB stabilized oil-in-water emulsions. 1,2-

Dichloroethane (a) and petroleum ether (b) were used as the heavy oil and the light oil, 

respectively. 
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