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Experimental Section

Chemicals. Nickel (II) acetate tetrahydrate (Ni(Ac)2, >98%) was purchased from Strem chemicals Inc.
Iron (III) acetylacetonate (Fe(acac)s, 97%) and Ruthenium (III) chloride hydrate (RuClz-xH2O, 99.98%)
were obtained from Sigma-Aldrich. Cobalt (II) acetate tetrahydrate (Co(Ac)2-4H20, 99.9%) was available
from Aladdin-reagent Inc. Poly (vinylpyrrolidone) (PVP, average M.W. 8000, K15-19) was purchased
from J&K Scientific Ltd. Sodium bromide (NaBr, >99), glucose (CsHi206, AR), isopropanol (IPA, AR)
and ethylene glycol (EG, AR) were available from Sinopharm Chemical Reagent Co. Ltd. (Shanghai,

China).

Preparation of Ru NWs and M-doped Ru NWs (M = Fe/Co/Ni). First, 10 mg RuCl;-xH20, 50 mg
PVP, 25 mg NaBr and 30 mg C¢H120¢ dispersed in 10 mL EG. The r mixture was maintained at 190 °C
about 4 h in an oil bath after ultrasonicated treatment for 30 min. The products were washed by using
ethanol/acetone solution. The preparations of Fe-doped Ru NWs, Co-doped Ru NWs and Ni-doped Ru
NWs were obtained by adding 5 mg Fe(acac);, 5 mg Co(Ac)> and 2 mg Ni(Ac), into the mixture,

respectively.

Synthesis of M-doped RuO2 NWs. M-doped Ru NWs were loaded on the Vulcan VCX72 carbon
(20wt%, determined by ICP-AES) in 10 mL ethanol with ultrasonicated for 1 h. The resulting
homogeneous mixture was washed with ethanol/acetone solution. The powders were annealed at 200 °C
for 30 min in air conditions. The products were denoted as RuO> NWs, Fe-doped RuO>, NWs, Co-doped

RuO> NWs and Ni-doped RuO> NWs, respectively.
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Characterizations. Transmission electron microscopy (TEM) was performed on a HITACHI HT7700
transmission electron microscope with voltage of 120 kV. High-resolution TEM (HRTEM), scanning
transmission electron microscopy energy-dispersive X-ray spectroscopy (STEM-EDS) element mappings
and high-angle annular dark-field STEM (HAADF-STEM) were carried out on a FEI Tecnai F20
transmission electron microscope with voltage of 200 kV. Powder X-ray diffraction (PXRD) patterns
were collected on a Shimadzu XRD-6000 X-ray diffractometer with a range from 20° to 80° and using a
Cu Ka X-ray as source (A = 1.540598 A). X-ray photoelectron spectroscopy (XPS) was done with an SSI
S-Probe XPS Spectrometer. The concentration of catalyst was determined by the inductively coupled

plasma atomic emission spectroscopy (710-ES, Varian, ICP-AES).

Electrochemical measurements. Electrochemical measurements of all samples were performed by using
CHI660 electrochemical workstation (Chenhua, Shanghai) with three-electrode system. The glassy
carbon (GC), saturated calomel electrode (SCE) and graphite rod were used as working electrode,
reference electrode and counter electrode, respectively. For electrochemical measurements, 2 mg catalyst
was dispersed in 900 pL IPA, 100 pL H>0 and 10 pL Nafion (5%) with ultrasonication treatment about
0.5h to obtain catalyst ink. Then, 20 pL catalyst ink was deposited on the GC electrode. After that,
electrochemical measurements were carried out in 0.5 M H2SO4, 0.05 M H2SO4, 0.1 M KOH and 1.0 M
KOH. All of polarization curves were obtained at the potential range with a scan rate of 5 mV s! and 95%

IR compensation. The long-term stabilities for water were tested by using a two-electrode system.

Computational details. All spin-unrestricted first-principles calculations were ran by using Vienna Ab-
initio Simulation Package (VASP) software with the projected augmented wave (PAW)."? The exchange-
correlation functional adopts the generalized gradient approximation (GGA) formula proposed by
Perdew-Burke- Ernzerhof (PBE) and the convergence standards of energy and force was corresponding to
10 eV and -0.05 eV/A, respectively, during self-consistent calculations.’ The cut-off energy was set

about 500 eV. Meanwhile, the empirical Grimme method (DFT-D2) was used to consider weak van der



Waals interaction of HER/OER intermediates into consideration. Besides, the Methfessel-Paxton
smearing method with a sigma value 0.05 eV is set to consider the electronic partial occupancies. In the
RuO: system, the (110) surface of 3 layered RuO: is cleaved from its bulk structure (a=3.14 A,
b=c=4.54A) with a 15 A vacuum height to avoid the image coupling of periodic boundary condition. The
bottom layer is constrained during optimization to simulate the bulk counterpart. The adsorption free

energy of G(*H) and G(*OH) is calculated by:

G(*H) = E(*H)-E(*) -%E(Hz) +AZPE-TAS

G(*OH) = E(*OH)- E(*) - (E(H:0) - % E(H2)) + AZPE - TAS

where E(¥*OH) and E(*H) are the total energy of substrate after the adsorption of H and OH. E(¥) is the total energy of
substrate without adsorption of intermediates. E(H>O) and E(H>) are the total energy of H»O and H, in gas phase. AZPE is the

zero-point energy based on finite differences method and the AS is the contribution of entropy.



Supporting Figures and Tables.

Aso B so

d=21%0.3nm d=22%03nm

0 04
14 16 18 20 22 24 26 28 4 16 18 20 22 24 26 28

Diameter (nm) Diameter (nm)
Cs Dso
d=22%0.3nm d=2.1%0.3nm
40; 40
[72] 7]
§ 301 Eso
0 20/ o
820 20
104 10

04 0
1.4 16 18 20 22 24 26 28 1.4 16 1.8 2.0 22 24 26 28
Diameter (nm) Diameter (nm)

Fig. S1 Size distributions of (a) Co-doped Ru NWs, (b) Ni-doped Ru NWs, (c) Fe-doped Ru NWs and (d)
Ru NWs.



Fig. S2 TEM images of (a, b) Ru NWs, (c, d) Fe-doped Ru NWs and (e, f) Ni-doped Ru NWs. (g)
HADDF-STEM image and (h) STEM-EDS element mappings of Ni-doped Ru NWs.



a b
c Elements At% Elements At%
Ru 95.3 Ru Ru 94.8
> W e 47 2 Ni 52
= Total 100.0 [0 Total 100.0
z 5
g £l
£ £
(o]
ke Fe i_'::..a;.a\l LIETS
2 4 6 8 10 2 4 6 8 10
Energy (KeV) Energy (KeV)

Fig. S3 SEM-EDS spectra of (a) Fe-doped Ru NWs and (b) Ni-doped Ru NWs.
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Fig. S4 PXRD patterns of M-doped Ru NWs.
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Fig. S5 TEM images of carbon supported (a

doped RuO2 NWs.
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Fig. S6 PXRD patterns of M-doped RuO2 NWs.
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Fig. S7 OER polarization curves of Ru NWs in (a) 0.5 M H2SOg, (b) 1.0 M KOH, (c) 0.05 M H>SO4 and
(d) 0.1 M KOH.



Fig. S8 HER polarization curves of Ru NWs in (a) 0.5 M H2SOg, (b) 1.0 M KOH, (c) 0.05 M H2SO4 and

(d) 0.1 M KOH.

Fig. S9 OER polarization curves of commercial RuOz in (a) 0.5 M H2SOg4, (b) 1.0 M KOH, (c) 0.05 M
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Fig. S10 OER polarization curves of commercial Ir/C, RuO2 NWs and Co-doped RuO2 NWs in (a) 0.5 M
H2SO4 and (b) 1.0 M KOH. HER polarization curves of commercial Pt/C, RuO2, NWs and Ni-doped
RuO2 NWs in (c) 0.5 M H2S04 and (d) 1.0 M KOH. The solid line is the 1% cycle and the dotted line is
the 1000 cycle.

Fig. S11 TEM images of carbon supported (a, b) Co-doped RuO2 NWs and (c, d) Ni-doped RuO2 NWs
after water splitting in 0.5 M H2SOa.
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Fig. S12 TEM images of carbon supported (a, b) Co-doped RuO2 NWs and (c, d) Ni-doped RuO2 NWs

after water splitting in 1.0 M KOH.
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Fig. S13 SEM-EDS spectra of Co-doped RuO, NWs after water splitting in (a) 0.5 M H2SO4 and (b) 1.0
M KOH. SEM-EDS spectra of Ni-doped RuO, NWs after water splitting in (c) 0.5 M H2SO4 and (d) 1.0

M KOH.
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Fig. S14 PXRD patterns of Co-doped RuO. NWs after water splitting in (@) 0.5 M H2SO4 and 1.0 M
KOH and Ni-doped RuO2 NWs after water splitting in (b) 0.5 M H2SO4 and 1.0 M KOH.
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Fig. S15 Ru 3p XPS spectra of (a) Co-doped RuO2, NWs and (b) Ni-doped RuO2, NWs after water
splitting in 0.5 M H2SOa4. Ru 3p XPS spectra of (¢) Co-doped RuO2 NWs and (d) Ni-doped RuO2 NWs
after water splitting in 1.0 M KOH.
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Fig. S16 TEM images of commercial Ir/C (a, b) before water splitting. TEM images of commercial Ir/C
after water splitting in (c, d) 0.5 M H2SO4 and (e, f) 1.0 M KOH.
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Fig. S17 TEM images of commercial Pt/C (a, b) before water splitting. TEM images of commercial Pt/C
after water splitting in (c, d) 0.5 M H>SO4 and (e, f) 1.0 M KOH.
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Fig. S18 XPS spectra of Ru 3p of M-doped RuO2 NWs.
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Table S1 Summary of recently reported OER electrocatalysts in different electrolytes.

Current Overpotential
Catalyst Electrolyte ) Reference
density (mV)
Co-doped RuO; NWs | 0.5 M H2SO, 10 mA cm? 200 This work
J. Am. Chem. Soc.
Rh,P/C 0.5 M H,S0O4 5 mA cm? 510 139, 5494-5502
(2017).
Adv. Mater. DOI:
ZnFeo4C01604 1.0 M KOH 10 mA cm? ~340 10.1002/adma.2018
02912.
Small 12, 3908-
Au@Ir NRB 0.5 M H,SO4 10 mA cm? 296
3913 (2016).
. Sci. Adv. 4,
HG-NiFe 1.0 M KOH 10 mA cm? 310
eaap7970 (2018).
CFP/NiC0204/ Nanoscale 8, 1390-
) 0.1 M KOH 10 mA cm? 34
C000.53Nio.47LMOs 1400 (2016).
) Electrochim. Acta
PdNi/CNFs-1:2 1.0 M KOH 10 mA cm 289
246, 17-26 (2017).
J. Am. Chem. Soc.
C0304 0.1 M KOH 10 mA cm ~320
138, 36-39 (2016).
Nano Energy 33,
Fe/P/IC 1.0 M KOH 10 mA cm? 330

221-228 (2017).
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Table S2 Summary of recently reported HER electrocatalysts in different electrolytes.

Current Overpotential
Catalyst Electrolyte ) Reference
density (mV)
Ni-doped RuO, NWs | 1.0 M KOH | 10 mA cm? 52 This work
_ Nat. Catal. 1, 460-468
Li-PPS NDs 0.5 M HzSOs | 10 mA cm? 91
(2018).
J. Am. Chem. Soc.
Ru/CsN4/C 0.5M H;S0,s | 10 mA cm™ 79 138, 16174-16181
(2016).
Angew. Chem. Int. Ed.
) 0.05 M
PtsNis NWs 5 mA cm? 60 128, 13051-13055
H>SO,
(2016).
ACS Catal. 7, 4026-
FeP|S-5mg 0.5M H;S0,s | 10 mA cm 74
4032 (2017).
Nano Energy 50, 273-
Au@CoP 0.5MH;S0s | 1mAcm? 160
280 (2018).
Adv. Mater. 28, 7640-
3DGN/IrO, 1.0 M KOH 10 mA cm 277
7645 (2016).
Adv. Sci. 2, 1500120
FeP NWs/rGO 0.5M H;S0; | 10 mA cm™ 107
(2015).
ACS Appl. Mater.
Au-Cu/CNFs-1:2 0.5M HSOs | 10 mA cm? 83 Interfaces 9, 19756-

19765 (2017).
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Table S3 Summary of recently reported overall water splitting electrocatalysts in different electrolytes.

Current ]
Catalyst Electrolyte ) Potential (V) Reference
density
CO-dOped RuO, NWs 0.5 M H,SO., 10 mA cm?? 1.537
) This work
INi-doped RuGz NWs | 9 o MKOH | 10 mA cm? 1,542
RuzNi> SNs/C Nano Energy 47, 1-7
] 1.0 M KOH 10 mA cm? 1.58
IRuzNi2 SNs/C (2018).
] ] Adv. Funct. Mater.
IrNi NCs||IrNi NCs 0.5 M H,SO4 10 mA cm? 1.58
27, 1700886 (2017).
RuO,/NiO/CF Small 14, 1704073
) 1.0 M KOH 10 mA cm? 1.50
||IRUO2/NiIO/CF (2018).
IrCoNi CFP Adv. Mater. 29,
) 0.5 M H,S0O4 2 mA cm? 1.56
|[IrCoNi CFP 1703798 (2017).
) Adv. Funct. Mater.
CFP/NiC0204
) 0.5 M H3S04 18 mA cm? 15 25, 6814-6822
ICFP/NiC0,04
(2015).
J. Am. Chem. Soc.
CoP/NCNHP
1.0 M KOH 10 mA cm? 1.64 140, 2610-2618
|ICoP/NCNHP
(2018).
) ) Adv. Mater. 29,
NiS2/CoS;||NiS2/CoS; 1.0 M KOH 10 mA cm? 1.78
1704681 (2017).
Angew. Chem. Int.
C030:-MTA
1.0 M KOH 10 mA cm? 1.53 Ed. 56, 1324-1328
||C0304-|\/|TA
(2017).
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