Supporting Information

An Ion-Conducting SnS-SnS₂ Hybrid Coating for Commercial Activated Carbons Enabling Their Use as High Performance Anodes for Sodium-Ion Batteries

Si-Wei Zhang, ^a Wei Lv,^{*b} Dong Qiu, ^b Tengfei Cao, ^a Jun Zhang, ^a Qiaowei Lin, ^b Xiangrong Chen, ^b Yanbing He, ^b Feiyu Kang ^{ab} and Quan-Hong Yang ^c

^a Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China

^b Shenzhen Geim Graphene Center (SGC), Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. Email: lv.wei@sz.tsinghua.edu.cn

^c Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. E-mail: qhyangcn@tju.edu.cn

Scheme S1. Schematic illustration of the preparation process of the AC@SnS-SnS₂.

Figure S1. SEM images of the oxidized AC.

Figure S2. (a) TEM image and (b-c) HRTEM images of the AC@SnO₂.

Figure S3. TEM images (a-c) and Fast Fourier transform (FFT)-diffraction (d-f) of the SnS $_2$ hybrid nanosheets on the surface of the AC.

Figure S4. (a) SEM image and (b) C, (c) S, (d) Sn, (e) O element mappings of the AC@SnS-SnS₂.

Figure S5. Raman spectra of AC, oxidized AC and AC@SnS-SnS₂.

Figure S6. (a) Typical XPS survey spectra of AC@SnS-SnS₂ and AC@SnO₂, (b) S 2p, and (c) C 1s XPS spectra of the AC@SnS-SnS₂.

Figure S7. Structural and electrochemical characterization of the oxidized AC. (a) Nitrogen adsorption isotherm with the pore size distribution, (b) XRD pattern, (c) galvanostatic charge-discharge profiles, (d) cyclic performance at a current density of 0.1 A g^{-1} , (e) rate performance, and (f) Nyquist plots of the oxidized AC.

Figure S8. Structural and electrochemical characterization of the AC@SnO₂. (a) Nitrogen adsorption isotherm with the inserted pore size distribution, (b) XRD pattern, (c) galvanostatic charge-discharge profiles, and (d) Nyquist plots of the AC@SnO₂.

	Cnts 4.0	с к – С -	
15 kV 20kX	2.0	K - Sn S Sn S	10 15 20 keV 5 - 40.955= 41,988 cnt
Element	Intensity (c/s)	Atomic (%)	Mass (%)
С	360.84	80.63	61.89
0	34.76	13.46	13.76
S	103.92	3.70	7.58
Sn	37.35	2.21	16.77

Figure S9. EDS spectrum of the AC@SnS-SnS₂. Wide area EDS analysis indicated the existing of 2.21% Sn and 3.697% S (atomic ratio), so the corresponding ratio of SnS₂ is 1.497% and SnS is 0.703%, and the Sn⁴⁺/Sn²⁺ mole ratio is about 2.13, suggesting the formation of the SnS-SnS₂ hybrids. (The Sn⁴⁺/Sn²⁺ ratio measured with XPS is estimated to be around 2.15).

Figure S10. TGA curves of AC@SnS-SnS₂, AC@SnO₂, and AC. The AC has 2.72 wt% impurities which can't be burned before treated by HNO₃. Since the Sn⁴⁺/Sn²⁺ ratio is about 2.1, the amounts of SnS₂ and SnS in the AC@SnS-SnS₂ are about 8.47 wt% and 3.34 wt%.

Figure S11. Galvanostatic charge-discharge curves of (a) AC and (b) oxidized AC at a current density of 0.1 A g^{-1} .

Figure S12. The SEM images of the AC@SnS-SnS₂ electrode (a and b) before and (c and d) after 100 cycles charge/discharge at a current density of 0.3 A g^{-1} .

Figure S13. XPS results of cycled AC@SnS-SnS₂ electrode. (a) XPS survey spectra; (b) atomic contents; (c) Sn 3d; (d) Na 1s; (e) O 1s and (f) C 1s profiles

Figure S14. Nyquist plots of AC@SnS-SnS₂ before and after 10 cycles

Table S1. The comparison of the sodium storage performance of the AC@SnS-SnS₂ vs. other coatings on porous carbon materials.

Materials	ICE (%)	Rate performance	Reference
CNTs/CFP@TiO2	43.6	128.6 mA h g ⁻¹ at 2 A g ⁻¹	[1]
HPC@G	/	250 mA h g ⁻¹ at 1 A g ⁻¹	[2]
CNT@SnO ₂ @G	43	97 mA h g ⁻¹ at 1 A g ⁻¹	[3]
Porous carbon/TiO ₂	/	120 mA h g ⁻¹ at 0.11 A g ⁻¹	[4]
NC/TiO ₂	37.3	104 mA h g ⁻¹ at 3.3 A g ⁻¹	[5]
SnS@rGO	42	240 mA h g ⁻¹ at 0.4 A g ⁻¹	[6]
SnS-C	~60	450 mA h g ⁻¹ at 0.80 A g ⁻¹	[7]
SnS_2/C	~75	80 mA h g ⁻¹ at 2 A g ⁻¹	[8]
SnS ₂ /rGO	~55	530 mA h g ⁻¹ at 2 A g ⁻¹	[9]
SnS ₂ /graphene	~50	337 mA h g ⁻¹ at 12.8 A g ⁻¹	[10]
AC@SnS-SnS ₂	68.6	110 mA h g ⁻¹ at 5 A g ⁻¹	This Work

Figure S15. CV curves of (a) AC and (b) oxidized AC at a scan rate of 0.1 mV s⁻¹.

Figure S16. CV curves at various scan rates from 0.1 mV s⁻¹ to 2 mV s⁻¹ of the (a) AC, (b) oxidized AC and (c) AC@SnS-SnS₂; Determination of the *b* values for various selected conditions for (d) AC, (e) oxidized AC and (f) AC@SnS-SnS₂.

	•	e 1	*
Samples	R_{s}/Ω	R_{ct}/Ω	$D/cm^{-2}s^{-1}$
AC@SnS-SnS2	4.7	136.1	7.67×10 ⁻¹³
AC@SnO2	5.2	323.6	6.58×10 ⁻¹³
AC	4.9	342.5	4.39×10 ⁻¹³

Table S2. Parameters of equivalent circuit modeling of EIS spectra of different samples.

Figure S17. TGA curves of AC@SnS-SnS₂- I and AC@SnS-SnS₂- II

Figure S18. EDS results of the AC@SnS-SnS₂- I and AC@SnS-SnS₂- II

Figure S19. Structure and electrochemical characterization of the AC with different contents of SnS-SnS₂ hybrid. (a) Nitrogen adsorption isotherms; (b) Pore size distributions; and Galvanostatic chargedischarge profiles of AC@SnS-SnS₂- I (c) and AC@SnS-SnS₂- II (d) at a current density of 0.1 A g⁻¹; (e) Cycling performance of them at 0.1 A g⁻¹.

Figure S20. SEM images of (a) AC@SnS₂ and (b) AC@SnS

Figure S21. (a) XRD patterns, (b) Raman spectra, (c) Sn 3d XPS spectra, (d) TGA curves, (e) N₂ adsorption isotherms, and (f) pore size distributions of AC@SnS₂ and AC@SnS.

Figure S22. (a and b) Galvanostatic charge-discharge profiles for selected cycles of $AC@SnS_2$ and AC@SnS at a current density of 0.1 A g⁻¹; (c and d) CV curves of the first four cycles of AC@SnS₂ and AC@SnS at a scan rate of 0.1 mV s⁻¹; (e) Cyclic performance of AC@SnS₂ and AC@SnS at a current density of 0.1 A g⁻¹; (f) Rate performance of AC@SnS₂ and AC@SnS at a current density of 0.05 A g⁻¹ to 5 A g⁻¹; (g) Nyquist plots of AC@SnS₂ and AC@SnS after the first cycle.

Results for the other two kinds of AC:

Figure S23. TEM images of the AC-2@SnS-SnS₂

Figure S24. Galvanostatic charge-discharge curves of (a and b) the other two kinds of AC, (c and d) the correlated oxidized ACs at a current density of 0.1 A g^{-1} .

Figure S25. (a and b) Cyclic performances at 0.1 A g^{-1} and (c and d) rate performances of the other two kinds of AC, the correlated oxidized ACs and the correlated AC@SnS-SnS₂s.

Reference

[1] H. Wang, G. Jia, Y. Guo, Y. Zhang, H. Geng, J. Xu, W. Mai, Q. Yan, H. J. Fan, Adv.

Mater. Interfaces, 2016, 3, 1600375.

[2] Y. Yan, Y.-X. Yin, Y.-G. Guo, L.-J. Wan, Adv. Energy Mater., 2014, 4, 1301584.

[3] D. Zhou, X. Li, L.-Z. Fan, Y. Deng, *Electrochimica Acta*, 2017, 230, 212–221.

[4] J. Lee, Y.-M. Chen, Y. Zhu, B. D. Vogt, ACS Appl. Mater. Interfaces, 2014, 6, 21011–21018.

[5] X. Zhao, C. Yan, X. Gu, L. Li, P. Dai, D. Li, H. Zhang, *ChemElectroChem*, **2017**, 4, 1516–1522.

[6] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, Y. Cao, J. Power Sources 2015, 293, 784–789.

[7] L. Wu, H. Lu, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, J. Mater. Chem. A 2014, 2, 16424–16428.

[8] B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. Meng, T. Wang, J. Lee, *Adv. Mater.* **2014**, *26*, 3854–3859.

[9] X. Xie, D. Su, S. Chen, J. Zhang, S. Dou, G. Wang, *Chem. Asian J.* 2014, *9*, 1611–1617.
[10] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, *Adv. Funct. Mater.* 2015, 25,481–489.