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Scheme S1. Schematic illustration of the preparation process of the AC@SnS-SnS2.

Figure S1. SEM images of the oxidized AC.

Figure S2. (a) TEM image and (b-c) HRTEM images of the AC@SnO2.
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Figure S3. TEM images (a-c) and Fast Fourier transform (FFT)-diffraction (d-f) of the SnS-
SnS2 hybrid nanosheets on the surface of the AC.

Figure S4. (a) SEM image and (b) C, (c) S, (d) Sn, (e) O element mappings of the AC@SnS-
SnS2.

Figure S5. Raman spectra of AC, oxidized AC and AC@SnS-SnS2.
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Figure S6. (a) Typical XPS survey spectra of AC@SnS-SnS2 and AC@SnO2, (b) S 2p, and (c) 
C 1s XPS spectra of the AC@SnS-SnS2.
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Figure S7. Structural and electrochemical characterization of the oxidized AC. (a) Nitrogen 
adsorption isotherm with the pore size distribution, (b) XRD pattern, (c) galvanostatic charge-
discharge profiles, (d) cyclic performance at a current density of 0.1 A g-1, (e) rate 
performance, and (f) Nyquist plots of the oxidized AC.
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Figure S8. Structural and electrochemical characterization of the AC@SnO2. (a) Nitrogen 
adsorption isotherm with the inserted pore size distribution, (b) XRD pattern, (c) galvanostatic 
charge-discharge profiles, and (d) Nyquist plots of the AC@SnO2.
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Element Intensity (c/s) Atomic (%) Mass (%)
C 360.84 80.63 61.89
O 34.76 13.46 13.76
S 103.92 3.70 7.58

Sn 37.35 2.21 16.77

Figure S9. EDS spectrum of the AC@SnS-SnS2. Wide area EDS analysis indicated the 
existing of 2.21% Sn and 3.697% S (atomic ratio), so the corresponding ratio of SnS2 is 1.497% 
and SnS is 0.703%, and the Sn4+/Sn2+ mole ratio is about 2.13, suggesting the formation of the 
SnS-SnS2 hybrids. (The Sn4+/Sn2+ ratio measured with XPS is estimated to be around 2.15).
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Figure S10. TGA curves of AC@SnS-SnS2, AC@SnO2, and AC. The AC has 2.72 wt% 
impurities which can’t be burned before treated by HNO3. Since the Sn4+/Sn2+ ratio is about 
2.1, the amounts of SnS2 and SnS in the AC@SnS-SnS2 are about 8.47 wt% and 3.34 wt%.
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Figure S11. Galvanostatic charge-discharge curves of (a) AC and (b) oxidized AC at a current 
density of 0.1 A g-1.

Figure S12. The SEM images of the AC@SnS-SnS2 electrode (a and b) before and (c and d) 
after 100 cycles charge/discharge at a current density of 0.3 A g−1.
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 Figure S13. XPS results of cycled AC@SnS-SnS2 electrode. (a) XPS survey spectra; (b) 

atomic contents; (c) Sn 3d; (d) Na 1s; (e) O 1s and (f) C 1s profiles
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Figure S14.  Nyquist plots of AC@SnS-SnS2 before and after 10 cycles

Table S1. The comparison of the sodium storage performance of the AC@SnS-SnS2 vs. other 
coatings on porous carbon materials.

Materials ICE  (%) Rate performance Reference

CNTs/CFP@TiO2 43.6 128.6 mA h g-1 at 2 A g-1 [1]

HPC@G / 250 mA h g-1 at 1 A g-1 [2]

CNT@SnO2 @G 43 97 mA h g-1 at 1 A g-1 [3]

Porous carbon/TiO2 / 120 mA h g-1 at 0.11 A g-1 [4]

NC/TiO2 37.3 104 mA h g-1 at 3.3 A g-1 [5]

SnS@rGO 42 240 mA h g-1 at 0.4 A g-1 [6]

SnS-C ~60 450 mA h g-1 at 0.80 A g-1 [7]

SnS2/C ~75 80 mA h g-1 at 2 A g-1 [8]

SnS2/rGO ~55 530 mA h g-1 at 2 A g-1 [9]

SnS2/graphene ~50 337 mA h g-1 at 12.8 A g-1 [10]

AC@SnS-SnS2 68.6 110 mA h g-1 at 5 A g-1 This Work
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Figure S15. CV curves of (a) AC and (b) oxidized AC at a scan rate of 0.1 mV s-1.

Figure S16. CV curves at various scan rates from 0.1 mV s-1 to 2 mV s-1 of the (a) AC, (b) 
oxidized AC and (c) AC@SnS-SnS2; Determination of the b values for various selected 
conditions for (d) AC, (e) oxidized AC and (f) AC@SnS-SnS2.
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Table S2. Parameters of equivalent circuit modeling of EIS spectra of different samples.

Samples Rs/Ω Rct/Ω D/cm-2s-1

AC@SnS-SnS2 4.7 136.1 7.67×10-13

AC@SnO2 5.2 323.6 6.58×10-13

AC 4.9 342.5 4.39×10-13
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Figure S17. TGA curves of AC@SnS-SnS2-Ⅰ and AC@SnS-SnS2-Ⅱ

Figure S18. EDS results of the AC@SnS-SnS2-Ⅰ and AC@SnS-SnS2-Ⅱ
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Figure S19. Structure and electrochemical characterization of the AC with different contents of SnS-

SnS2 hybrid. (a) Nitrogen adsorption isotherms; (b) Pore size distributions; and Galvanostatic charge-

discharge profiles of AC@SnS-SnS2-Ⅰ (c) and AC@SnS-SnS2-Ⅱ (d) at a current density of 0.1 A g-1; 

(e) Cycling performance of them at 0.1 A g-1.
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Figure S20. SEM images of (a) AC@SnS2 and (b) AC@SnS

Figure S21. (a) XRD patterns, (b) Raman spectra, (c) Sn 3d XPS spectra, (d) TGA curves, (e) 
N2 adsorption isotherms, and (f) pore size distributions of AC@SnS2 and AC@SnS.
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Figure S22. (a and b) Galvanostatic charge-discharge profiles for selected cycles of 
AC@SnS2 and AC@SnS at a current density of 0.1 A g-1; (c and d) CV curves of the first four 
cycles of AC@SnS2 and AC@SnS at a scan rate of 0.1 mV s-1; (e) Cyclic performance of 
AC@SnS2 and AC@SnS at a current density of 0.1 A g-1; (f) Rate performance of AC@SnS2 
and AC@SnS at current densities ranging from 0.05 A g-1 to 5 A g-1; (g) Nyquist plots of 
AC@SnS2 and AC@SnS after the first cycle.
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Results for the other two kinds of AC:

Figure S23. TEM images of the AC-2@SnS-SnS2

Figure S24. Galvanostatic charge-discharge curves of (a and b) the other two kinds of AC, (c 
and d) the correlated oxidized ACs at a current density of 0.1 A g-1.
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Figure S25. (a and b) Cyclic performances at 0.1 A g-1 and (c and d) rate performances of the 
other two kinds of AC, the correlated oxidized ACs and the correlated AC@SnS-SnS2s.
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