Electronic Supplementary Information

Tailoring Three-Dimensional Porous Cobalt Phosphide Templated from

Bimetallic Metal-Organic Frameworks as Precious-Metal-Free Catalysts

towards Dehydrogenation of Ammonia-Borane

Chun-Chao Hou,^{a,‡} Qian-Qian Chen,^{a,b,‡} Kai Li,^c Chuan-Jun Wang,^a Cheng-Yun Peng,^{a,b} Rui Shi,^a and Yong Chen^{*a,b}

^aKey Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

^bUniversity of Chinese Academy of Sciences, Beijing 100049, P.R. China.

^cCollege of Materials Science and Engineering, Shenzhen University, Xueyuan Blvd 1066, Shenzhen, P. R. China.

[‡]Chun-Chao Hou and Qian-Qian Chen contributed equally to this work

*Corresponding Author: Y. Chen (chenyong@mail.ipc.ac.cn)

Fig. S1. TEM image of Zn-Co-O@CNF.

Fig. S2. XRD patterns of ZIF-67 and BZIFs with different Zn:Co molar ratios of 0.5:2.5, 1.0:2.0, 1.5:1.5 and 2.0:1.0.

Fig. S3. XRD patterns of $Co_3O_4@C$ and Zn-Co-O@CNF derived from BZIFs with different Zn:Co ratios of 0.5:2.5, 1.0:2.0, 1.5:1.5 and 2.0:1.0.

Fig. S4. XPS spectra in the N 1s regions of CoP@CNF.

Fig. S5. Raman spectra of CoP@CNF and CoP@C.

The existence of carbon was confirmed by Raman spectroscopy. Two peaks observed at 1349 cm⁻¹ and 1581 cm⁻¹ belong to the graphite sp³ carbon (D-band) and disordered sp² carbon (G-band), respectively. In addition, the low intensity of peaks indicates the low amount and low crystallinity of carbon in CoP@CNF.

Fig. S6. EDX spectrum of CoP@CNF. The Si peak originates from Si substrate.

Fig. S7. EDX spectrum of Zn-Co-O@CNF. The Si peak originates from Si substrate.

Fig. S8. (a,c,e,g,i) TEM images and (b,d,f,h,j) corresponding to the size distributions of CoP@C, and as-prepared CoP@CNF with different Zn:Co molar ratios of 0.5:2.5, 1.0:2.0, 1.5:1.5 and 2.0:1.0.

Fig. S9. Recorded peak area of iso-volumetric gases corresponding to labeled H_2 produced in reaction systems.

Fig. S10. ¹H NMR spectrum of a NH₃BH₃ solution in D₂O before reaction at 298 K.

Fig. S11. ¹H NMR spectrum of a NH_3BH_3 solution in D_2O after reaction at 298 K.

Fig. S12. 11 B NMR spectrum of a NH₃BH₃ solution in D₂O before reaction at 298 K.

Fig. S13. ¹¹B NMR spectrum of a NH_3BH_3 solution in D_2O after reaction at 298 K.

Fig. S14. Logarithmic plot of H₂ generation rate versus [metal].

Fig. S15. Logarithmic plot of H_2 generation rate versus [AB].

Fig. S16. Arrhenius plot of ln rate versus 1/T. The activation energy is caculated to be 48.5 kJ mol⁻¹ for CoP@CNF (1.5:1.5) sample in the catalytic hydrolysis of AB.

Fig. S17. (a, b) TEM images of CoP@CNF after 4 cycles for catalytic reactions. (c) The size distribution of CoP nanoparticles in (b). (d) XRD patterns of CoP@CNF before and after stability test.

Sample	MOF precusor	Surface areas (m ² g ⁻¹)	Reference
CoP@CNF	Zn/Co-ZIF	145.3	This work
CoP polyhedron	ZIF-67	46.9	1
Co _{0.38} Fe _{0.62} P	РВА	43.9	2
Ni ₅ P ₄ -Ni ₂ P@C nanoplates	Ni-Ni PBA	35.0	3
FeP nanocubes	PB	39.6	4
CoP concave polyhedrons	ZIF-67	29.4	5
CoP/rGO-400	ZIF-67	40.0	6
CoP nanosheet	ZIF-67	94.5	7
CoP@BCN	ZIF-67	146.0	8
Co4Ni1P NTs	MOF-74	55.6	9
CoP@GC	ZIF-67	92.0	10

 Table S1. Surface areas of metal phosphides derived from MOFs reported in

 literatures.

 Table S2.
 ICP-OES results of CoP@C and CoP @CNF with different Zn:Co molar ratios.

Samples	CoP@C	CoP@CNF	CoP@CNF	CoP@CNF	CoP@CNF
		(0.5:1.5)	(1.0:2.0)	(1.5:1.5)	(2.0:1.0)
Mass ratio(%)	91.13	85.39	83.98	78.20	75.28
of CoP					

Table S3. Elemental	contents of CoP@CNF	(1.5: 1.5) obtained b	y XPS.
---------------------	---------------------	-----------	--------------	--------

Elements	С	0	Со	Р	N
Content (wt%)	8.79	22.01	39.33	29.11	0.76 ^[a]

[a] The data is obtained by EDX.

Table S4. Activities of catalysts in H_2 generation from hydrolysis of NH_3BH_3 reported in literatures.

Catalyst	TOF [mol(H ₂) mol (catalyst) ⁻¹ min ⁻¹]	т (К)	Reference
CoP@CNF	165.5 ^[a]	298	This work
СоР	72.2 ^[a]	298	11
Cu _x Co _{1-x} O-GO	70.7	298	12
CuO-NiO	60	298	13
Cu _{0.5} Ni _{0.5} /CMK-1	54.8	298	14
Ni ₂ P	40.4	298	15
Co/CNT	42.3	298	16
Ni _{0.9} Mo _{0.1} /graphene	66.7	298	17
PEI-GO/Co	39.9	298	18
Ni nanoparticles	8.8	298	19
RGO/Pd	6.25	298	20
Co NPs(in situ)	49.8	298	21
Co/graphene	13.8	298	22
Co@N-C-700	5.6	298	23
Ni/ZIF-8	14.2	298	24
Ni/CNT	26.2	298	25
Ni@MCS-30	30.7	298	26
Cu _{0.49} Co _{0.51} /C	28.7	298	27
Ni NPs@3D-(N)GFs	41.7	298	28
Cu NPs@SCF	40.0	298	29

[a]The reaction was performed in alkaline ammonia-borane solution.

References

- [1] M. Liu and J. Li, ACS Appl. Mater. Interfaces, 2016, 8, 2158–2165.
- [2] J. Hao, W. Yang, Z. Zhang and J. Tang, *Nanoscale*, **2015**, *7*, 11055–11062.
- [3] X. Y. Yu, Y. Feng, B. Guan, X. W. Lou and U. Paik, *Energy Environ. Sci.*, **2016**, *9*, 1246–1250.
- [4] W. Yang, J. Hao, Z. Zhang and B. Zhang, J. Colloid Interface Sci., 2015, 460, 55–60.
- [5] M. Xu, L. Han, Y. Han, Y. Yu, J. Zhai and S. Dong, *J. Mater. Chem. A*, **2015**, *3*, 21471–21477.
- [6] L. Jiao, Y. X. Zhou and H. L. Jiang, *Chem. Sci.*, **2016**, *7*, 1690–1695.
- [7] X. Xiao, C. T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai and D. Yu, Energy Environ. Sci., 2017, 10, 893–899.
- [8] H. Tabassum, W. Guo, W. Meng, A. Mahmood, R. Zhao, Q. Wang and R. Zou, Adv. Energy Mater., 2017, 7, 1601671.
- [9] L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang and X. Zhao, Adv. Funct. Mater., 2017, 27, 1703455.
- [10] R. Wu, D. P. Wang, K. Zhou, N. Srikanth, J. Wei and Z. Chen, J. Mater. Chem. A, 2016, 4, 13742–13745.
- [11] Z. C. Fu, Y. Xu, S. L. F. Chan, W. W. Wang, F. Li, F. Liang, Y. Chen, Z. S. Lin, W. F. Fu and C. M. Che, *Chem. Commun.*, **2017**, *53*, 705–708.
- [12] K. Feng, J. Zhong, B. Zhao, H. Zhang, L. Xu, X. Sun and S. T. Lee, Angew. Chem., Int. Ed., 2016, 55, 11950–11954.
- [13] H. Yen and F. Kleitz, J. Mater. Chem A, 2013, 1, 14790–14796.
- [14] H. Yen, Y. Seo, S. Kaliaguine and F. Kleitz, ACS Catal., 2015, 5, 5505–5511.
- [15] C. Y. Peng, L. Kang, S. Cao, Y. Chen, Z. S. Lin and W. F. Fu, Angew. Chem., Int. Ed., 2015, 54, 15725–15729.
- [16] Z. Li, T. He, L. Liu, W. Chen, M. Zhang, G. Wu and P. Chen, Chem. Sci., 2017, 8, 781–788.
- [17] Q. Yao, Z. H. Lu, W. Huang, X. Chen and J. Zhu, J. Mater. Chem. A, 2016, 4, 8579–8583.
- [18] J. Hu, Z. Chen, M. Li, X. Zhou and H. Lu, ACS Appl. Mater. Interfaces, 2014, 6, 13191–13200.
- [19] Ö. Metin, V. Mazumder, S. Özkar and S. Sun, J. Am. Chem. Soc., 2010, 132, 1468–1469.

- [20] P. Xi, F. Chen, G. Xie, C. Ma, H. Liu, C. Shao, J. Wang, Z. Xu, X. Xu and Z. Zeng, Nanoscale, 2012, 4, 5597–5601.
- [21] J. M. Yan, X. B. Zhang, H. Shioyama and Q. Xu, J. Power Sources, 2010, 195, 1091–1094.
- [22] L. Yang, N. Cao, C. Du, H. Dai, K. Hu, W. Luo and G. Cheng, *Mater. Lett.*, **2014**, *115*, 113–116.
- [23] H. Wang, Y. Zhao, F. Cheng, Z. Tao and J. Chen, *Catal. Sci. Technol.*, **2016**, *6*, 3443–3448.
- [24] P. Li, K. Aranishi and Q. Xu, Chem. Commun., 2012, 48, 3173–3175.
- [25] J. Zhang, C. Chen, W. Yan, F. Duan, B. Zhang, Z. Gao and Y. Qin, *Catal. Sci. Technol.*, **2016**, *6*, 2112–2119.
- [26] P. Z. Li, A. Aija and Q. Xu, Angew. Chem., Int. Ed., 2012, 51, 6753–6860.
- [27] A. Bulut, M. Yurderi, I. E. Ertas, M. Celebi, M. Kaya and M. Zahmakiran, *Appl Catal B–Environ*, **2016**, *180*, 121–129.
- [28] M. Mahyari and A. Shaabani, J. Mater. Chem. A, 2014, 2, 16652–16659.
- [29] M. Kaya, M. Zahmakiran, S. Özkar and M. Volkan, *ACS Appl. Mater. Interfaces*, **2012**, *4*, 3866–3873.