Supporting Information

A Super-Stretchable and Tough Functionalized Boron Nitride/PEDOT:PSS/Poly(*N*-isopropylacrylamide) Hydrogel with Self-healing, Adhesion, Conductive and Photothermalic Activity

Shuai Cao^{1#}, Xin Tong^{1#}, Kun Dai^{1,2}, Qun Xu^{1*}

¹College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, *P.R. China*

²Key Laboratory of Materials Processing and Mold (Zhengzhou University), Minisitry of Education, Zhengzhou University, Zhengzhou 450002, P.R. China

[#]S. Cao and X. Tong are the co-authors.

*Corresponding Authors E-mail: <u>qunxu@zzu.edu.cn</u> Tel: 0086-371-67767827

Experimental <u>s</u>ection

Materials and rReagents:-*N*-Iisopropyl acrylamide (Aladdin, 98%), PEDOT:PSS suspension (13 mg mL⁻⁻¹, Clevios, PH1000), h-BN pPowder (Acros Organics), synthetic hectorite clay of Laponite-XLS (Rockwood Ltd. sol-forming 92.32 wt% of grade, Mg_{5.34}Li_{0.66}Si₈O₂₀(OH)₄Na_{0.66} and 7.68_wt% of Na₄P₂O₇), polyvinylpyrrolidone (PVP) (Strem Chemicals) were all <u>commercially</u> supplied-<u>commercially</u>. Hydrogen peroxide ($H_2O_{2,2}$) 30% aqueous solution), initiator potassium persulfate (KPS), catalyst N,N,N'',N''tetramethylethylenediamine (TEMED) catalyst, and ethanol were purchased from Sinophrarm Chemical Reagent Co., Ltd. (Shanghai, China); NIPAM and KPS were used after recrystallization. All other reagents were of analytical grade and used without further purification.

Preparation of Hhydrogels: The f-BNNS- nanosheets were prepared via a_SC CO₂ treatment according to our previous work.¹ The hydrogels weare prepared as the follows; ing. Firstly, the NIPAM monomer was dispersed into the PEDOT:PSS suspension by with continuous and vigorous stirring in an ice_-water bath for 1_h under nitrogen atmosphere. Subsequently, the f-BNNS and clay (including Rhodamine B, if necessary) weare ultrasonicated and stirred for two hours; and then were added into the aforementioned suspension. After the suspension was entirely dissolved, KPS (32 mg/mL) and TEMED were added under stirring. Finally, the obtained mixture was quickly poured into the sealed mold for complete free-radical polymerization, which proceeded at 20 °C to generate hydrogels with desired 3D geometries. The specific quantity of_contents of each components is showngiven in Table S2-in Supporting Information.

Mechanical property measurements: All <u>of the</u> mechanical properties of the conductive hydrogels were tested on a universal tensile-compressive tester (UTM_2203, Shenzhen Suns Technology Stock CoO., LtTdD., China) equipped with an electrically contactable jig for insitu resistance measurements. In the compression test, samples with cylinder shapes (10 mm $(D) \times 10 \text{ mm}(H)$) were placed on a metal plate coated with silicon oil to decrease the friction and <u>we</u>are tested at a loading speed of 40 mm/min. For <u>the</u> tensile test, conductive hydrogels were made into rods (10 mm in initial tensile length and 6.5 mm in diameter) and tested at the<u>a</u> test velocity of 100 mm/min. All the stresses measured <u>we</u>are engineering stresses or nominal stresses <u>which-that we</u>are calculated by the <u>following</u> formula:

 $\int_{\sigma=}^{F} \frac{F}{A0}$

<u>w</u> Where F is the applied load, and A_0 is the initial cross-sectional area.

The engineering strain (ε) was calculated as <u>follows</u>:

 $\sum_{r=L0}^{\Delta L}$

<u>w</u>Where L_0 is the original specimen height and ΔL is the measured extension.

All_the tests were performed at the room temperature, and the average value was takenobtained at least three times.

Rheological mMeasurements: The rheological behaviors of the hydrogels weare analyzed with a modular compact rheometer (Anton Paar, MCR 302). Samples weare prepared in the shape of a cylinder with a diameter of 25 mm and a thickness of 2 mm. The frequency (ω) sweep test was conducted at $\omega = 1 = 100$ rad/s and strain (γ) = 0.5% of f-BNNS and PEDOT:PSS hydrogels at 25 °C.

Self-hHealing: The cylindrical samples (-(dyed and undyed)) were cut into two pieces with a razor blade. Then, the separated gel surfaces were re-contacted slightly and sealed quickly to avoid the evaporation of water. The self-healing was completed after an appropriate time. The healed hydrogel remaintained its conductive propertity and canould endure deformation, such as bending and stretching.

Characterization: Surface images and structure of the PEDOT:PSS hydrogels were characterized using scanning electron microscopy (SEM, JEOR JSM-6700F). Fourier transform infrared (FT-IR) spectroscopicy measurements were recorded on <u>a</u> TENSOR 27 FTIR spectrometer (Bruker) in <u>the</u> absorption mode. Ultraviolet (UV) spectra were collectrecorded by using a Lambda 35 UV—vis spectrometer (Perkin Elmer, USA)._The Raman spectra of the samples were recorded <u>using in</u> a Renishaw microscope system RM2000 with a 532 nm laser as the excitation source. The XRD patterns from 5° to 80° were obtained using a D/max 2500 X-ray diffractometer (Rigaku) at a scanning –rate of 8°/min with Cu Ka ($\lambda = 0.154$ nm).

Supplementary Figures

Figure S1- XRD patterns of f-BNNS/PEDOT:PSS/PNIPAM hydrogels and f-BNNS/-PNIPAM hydrogels.

Figure S2- Possible (a and b) and <u>i</u>Impossible (c) form<u>s</u> of hydrogen bonding_i- (d) PEDOT molecular chain conformation changed from benzene structure to quinoid structure.

Figure S3- (a) The mass of dried (D) and hydrated (H) states of the f-BNNS/PEDOT:PSS/-PNIPAM hydrogel and f-BNNS/PNIPAM hydrogel-<u>and</u> (b) <u>c</u>-alculated swelling ratio upon the dimension of mass.

Figure S4 Evaluation of conductivity using a multimeter with a constant distance between <u>the</u> electrodes. The results demonstrated <u>that</u> PEDOT:-PSS&NIPAM (b) has higher conductivity than PEDOT:-PSS (a).

Figure S5 Typical tensile <u>s</u>Strain_-stress curves of the original and self-healed hydrogels.

Figure S6. (a) Conductive after adding self-healing f-BNNS/PEDOT:PSS/PNIPAM hydrogels <u>and</u>. (b) <u>nNo</u> conductivity when the circuit is disconnected.

Figure S7 Digital photographs of temperature change of f-BNNS/PEDOT:PSS/PNIPAM hydrogels (*overheadabove*) and pure water_(*below*) after <u>the</u> removal of light source.

NIPA	PEDOT:PSS_(PH1000)	Clay	f-BNNS	H ₂ O	KPS	TEMED
М	$(13 mg mL^{-1})$		(1_mg mL=-		(20_mg mL=-	
	<u>(</u> [µ <u>]</u>]	<mark>({</mark> mg)	¹)	<u>(</u> {µ <u>L</u>	¹)	{(µ<u>L</u>ł)]
<u>(</u> [mg)]		}	<u>(</u> {µ <u>L</u> 1])	1)]	<u>(</u> {µ <u>L</u> })]	
500	0_(0.00_wt%)	160	800	4500	500	6
500	120_(0.03_wt%)	160	800	4380	500	6
500	200_(0.05_wt%)	160	800	4300	500	6
500	280_(0.07_wt%)	160	800	4220	500	6
500	500_(0.11_wt%)	160	800	4000	500	6

 Table S1- Performance comparison chart of hydrogels.

Table S2. Compositions of f-BNNS/PEDOT:PSS/PNIPAM sample.

1. X. Tong, L. N. Du and Q. Xu, J. Mater. Chem. A, 2018, 6, 3091-3099.

Materials	Elonga	Compressive	Self-	Conductivity	Adhesion	Optical	Reference
	tion at	strength	healing			thermal	
	break	(KPa)				performa	
	(%)					nce	
f-BNNS/PNIPAM	960 %	200	6 <u>h</u>	×	~	×	J. Mater. Chem. A,
							2018,6,3091-309
AuNPS/BACA/PNIPAM	2300%	160	1_min	×	×	~	Chem.,2017,3, 691–
							705,
PPY/CNT/PNIPAM	561 %	×	×	0.40_S/cm	×	~	ChemMater
							2018,30,1729-1742
PEDOT:PSS(6.83%)	530%	×	×	0.01_S/cm	×	×	AdvMater., 2016,
/PAAm/MBAAm							28, 1636–1643
PEDOT:PSS hydrogel							
(treated with concentrated	×	×	×	8.80_S/cm	×	×	AdvMater., 2017,
H ₂ SO ₄)							1700974
PEDOT:PSS/ <u>a</u> Acrylicacid-	>	8–374	×	> 0.29_S/cm	×	×	NatCommun.,
/PAAc	100 %						2018, 2740
							Angew. Chem. Int.
EG/PVA /PEDOT:PSS	962 %	448	20	0.009_S/cm	×	×	Ed., 2017, 56, 1–6
							ACS_Appl. Mater.
CNT/PEDOT:PSS/PNIPAM	×	×	×	1	1	~	Interfaces, 2018,10,
							7263-7270
f-BNNS/ PEDOT:PSS	2666 %	700	6 h	0.0004_S/cm	1	~	Our <u>w</u> ₩ork
(0.03-0.11%)/PNIPAM							