Supporting Information

Binder-free Ni₃S₂@PANI Core-Shell Nanosheets as Durable and High-

Energy Cathode for Aqueous Rechargeable Nickel-Zinc battery

Lijun Zhou,^a Xiyue Zhang,^b Dezhou Zheng,^a, Wei Xu,^{a*} Jie Liu,^c and Xihong Lu ^{a,b,*} ^aSchool of Applied Physics and Materials, Wuyi University, Jiangmen 529020, PR China E-mail addresses: <u>weixugreat@126.com (W. Xu)</u>, <u>luxh6@mail.sysu.edu.cn (X.</u> Lu).[†]

^bMOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China ^cCollege of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China

Calculations:

The loading mass *m* (mg cm⁻²) of the Ni₃S₂ on nickel foam was evaluated by a method that a piece of Ni₃S₂ sample (cut into 0.5 cm \bigotimes 2 cm) was calcined in the H₂/Ar (or H₂/N₂) atmosphere (10 : 90 by volume) at 500 °C for 4 h, then weighed the loss mass and calculated the weigh of Ni₃S₂ from the following equation ¹⁻³:

$$m = \frac{\Delta m \times M_{Ni_3 S_2}}{2M_s} \tag{1}$$

Where Δm is the weight loss after calcining obtained by electronic scales (BT25S, 0.01 mg), ${}^{M_{Ni_3}S_2}$ and M_s are the molecular weight of Ni₃S₂ and S, respectively.

The specific capacity C (mA h g⁻¹) of the battery was calculated from the

discharge curve with the equations as followed:

$$C = \frac{\int_{0}^{\Delta t} I \times dt}{m}$$
(2)

Where $I \pmod{2}$ is the applied discharging current density, Δt (h) is the discharging time and $m \pmod{2}$ is the mass loading of the electrodes (3.5 mg cm⁻²).

The mass energy density E and mass power density P of the battery were obtained from the following equations:

$$E = C \times \Delta V \tag{3}$$
$$P = \frac{C \times \Delta V}{1000 \times \Delta t} \tag{4}$$

Where E (Wh kg⁻¹) is the energy density, C is the mass capacity obtained from Equation (1), (2) and ΔV (V) is the discharging voltage. P (kW kg⁻¹) is the specific power density and Δt (h) is the discharging time.

Figure S1. XRD patterns of pristine Ni₃S₂, Ni₃S₂@PANI-4, Ni₃S₂@PANI-6 and

Ni₃S₂@PANI-8 electrodes.

Figure S2. SEM images of the (a) Ni₃S₂@PANI-4 and (b) Ni₃S₂@PANI-8

electrodes (lower insets).

Figure S3. (a) CV curves at scaning rate of 10 mV s⁻¹, (b) GCD curves at 14.2 A g⁻

 1 of the Ni_3S_2, Ni_3S_2@PANI-4, Ni_3S_2@PANI-6 and Ni_3S_2@PANI-8 electrodes.

Figure S4. SEM images of Ni₃S₂@PANI-6 electrode after 10000 cycles.

Figure S5. (a) CV curves at a scan rate of 10 mV s⁻¹, (b) GCD curves at 14.2 A g⁻¹ of NF@PANI and Ni₃S₂@PANI-6 electrodes.

Figure S6. The rate performance of Ni_3S_2 @PANI//Zn battery.

Figure S7. GCD curves at 5.1 A g^{-1} of Ni₃S₂@PANI//Zn battery in repeated experiments.

Table S1. The average value of capacities from three experiments (Figure S7).

No.	Original	Repeat 1	Repeat 2	Average
Capacity (mAh g ⁻¹)	241.8	232.5	254.1	242.8 ± 8.8

Figure S8. EIS spectra of Ni₃S₂@PANI//Zn battery before and after 5000 cycles.

Figure S9. CV curves at various scan rates of (a) Ni₃S₂@PANI//Zn, (b) Ni₃S₂//Zn,

and log (i) versus log (v) plots at specific peak currents.

References

- 1. S. Ni, X. Yang and L. Tao, *Mater. Chem. Phys.s*, 2012, **132**, 1103-1107.
- 2. T. K. Kim, W. Chen and C. Wang, J. Power Sources, 2011, 196, 8742-8746.
- 3. X. Li, A. Dhanabalan, K. Bechtold and C. Wang, *Electrochem. Commun.*, 2010, **12**, 1222-1225.