Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting information

Cu₃P as a novel cathode material for rechargeable aluminum-ion batteries

Gangyong Li, Jiguo Tu,* Mingyong Wang and Shuqiang Jiao*

State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083,

P R China. * E-mails:guo15@126.com (J Tu), sjiao@ustb.edu.cn (S Jiao)

Fig. S1 XPS survey spectra of Cu_3P and Cu_3P/C composite.

Fig. S2 (a) Cu 2p XPS spectrum of metallic Cu. (b) P 2p XPS spectrum of red P.

Fig. S3 SEM image (a) and the corresponding element mapping images of C (b), Cu

(C) and P (d) for Cu_3P/C composite.

Fig. S4 (a and b) TEM, (c) HRTEM images and (d) SAED pattern of Cu₃P/C.

Fig. S5 Digital photographs showing the materials required for battery assembly.

Fig. S6 SEM images of Cu_3P (a and b) and Cu_3P/C (c and d) electrodes.

Fig. S7 CV curves of Ta current collector and Cu₃P at a scanning rate of 0.2 mV s⁻¹.

Fig. S8 Charge-discharge voltage profiles of Cu_3P for the 1st, 2nd, and 50th cycle at a current density of 50 mA g⁻¹.

Fig. S9 SEM images of Cu_3P electrode after 50 cycles at 50 mA g⁻¹.

Fig. S10 (a) TEM and (b) HRTEM images and (c) SAED pattern of Cu_3P/C electrode after 50 cycles at 50 mA g⁻¹.

Fig. S11 (a) Charge-discharge voltage profiles of acetylene black for the 1st, 2nd, and 50th cycle. (b) Cycling performance of acetylene black. Current density: 50 mA g⁻¹.

Fig. S12 CV curves of Cu_3P for the first three cycles at a scanning rate of 0.2 mV s⁻¹.

Cathode materials	Electrolyte (molar ratio)	Current density (mA g ⁻¹)	Cycling performance	Ref.
Cu ₃ P/C	AlCl ₃ : [EMIm]Cl (1.3 : 1)	50	146.7 mAh g ⁻¹ (50 th)	This work
$Mo_{2.5+y}VO_{9+z}$	AlCl ₃ : [EMIm]Cl (1.1 : 1)	10	85 mAh g ⁻¹ (25 th)	1
VO ₂	AlCl ₃ : [EMIm]Cl (1 : 1 with 0.5 wt% C ₁₄ H ₁₄ OS)	50	116 mAh g ⁻¹ (100 th)	2
Ni ₃ S ₂ @graphene	AlCl ₃ : [EMIm]Cl (1.3 : 1)	100	60 mAh g ⁻¹ (100 th)	3
CuS@C	AlCl ₃ : [EMIm]Cl (1.3 : 1)	20	90 mAh g ⁻¹ (100 th)	4
NiS	AlCl ₃ : [EMIm]Cl (1.3 : 1)	200	104.4 mAh g ⁻¹ (100 th)	5
TiS_2	AlCl ₃ : [EMIm]Cl (1.5 : 1)	5	65 mAh g ⁻¹ (20 th)	6
Mo_6S_8	AlCl ₃ : [EMIm]Cl (1.5 : 1)	12	70 mAh g ⁻¹ (50 th)	7
G-SnS ₂	AlCl ₃ : [EMIm]Cl (1.3 : 1)	200	70 mAh g ⁻¹ (100 th)	8
WO _{3-x}	AlCl ₃ : [EMIm]Cl (1.3 : 1)	100	64.7 mAh g ⁻¹ (100 th)	9
VS ₄ /rGO	AlCl ₃ : [EMIm]Cl (1.3 : 1)	100	80 mAh g ⁻¹ at 100 th	10
CuO	AlCl ₃ : [EMIm]Cl (1.3 : 1)	50	130.3 mAh g ⁻¹ (100 th)	11
NiCo ₂ S ₄	AlCl ₃ : [EMIm]Cl (1.3 : 1)	100	143.8 mAh g ⁻¹ (100 th)	[12]
Ni ₁₁ (HPO ₃) ₈ (OH) ₆ /rG O	AlCl ₃ : [EMIm]Cl (1.3 : 1)	200	41.9 mAh g ⁻¹ (1500 th)	[13]

Table S1 Comparison of energy storage performance between Cu_3P/C and other transition metal-based cathode materials recently reported for rechargeable AIBs

Reference

- 1 W. Kaveevivitchai, A. Huq, S. Wang, M. Park and A. Manthiram, *Small*, 2017, **13**, 1701296.
- 2 W. Wang, B. Jiang, W. Xiong, H. Sun, Z. Lin, L. Hu, J. Tu, J. Hou, H. Zhu and S. Jiao, Sci. Rep., 2013, 3, 3383.
- 3 S. Wang, Z. Yu, J. Tu, J. Wang, D. Tian, Y. Liu and S. Jiao, *Adv. Energy Mater.*,
 2016, 6, 1600137.
- 4 S. Wang, S. Jiao, J. Wang, H.S. Chen, D. Tian, H. Lei and D. Fang, ACS Nano, 2017, 11, 469.
- 5 Z. Yu, Z. Kang, Z. Hu, J. Lu, Z. Zhou and S. Jiao, Chem. Commun., 2016, 52, 10427.
- 6 L. Geng, J. Scheifers, C. Fu, J. Zhang, B. Fokwa and J. Guo, ACS Appl. Mater. Interfaces, 2017, 9, 21251.
- 7 L. Geng, G. Lv, X. Xing and J. Guo, Chem. Mater., 2015, 27, 4926.
- 8 Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu and L. Wang, Adv. Mater., 2017, 29, 1606132.
- 9 J. Tu, H. Lei, Z. Yu and S. Jiao, Chem. Commun., 2018, 54, 1343.
- 10 X. Zhang, S. Wang, J. Tu, G. Zhang, S. Li, D. Tian and S. Jiao, *ChemSusChem*, 2018, **11**, 709.
- 11 X. Zhang, G. Zhang, S. Wang, S. Li and S. Jiao, J. Mater. Chem. A, 2018, 6, 3084.
- 12 S. Li, J. Tu, G. Zhang, M. Wang and S. Jiao, J. Electrochem. Soc., 2018, 165, A3504.
- 13 J. Tu, H. Lei, M. Wang, Z. Yu and S. Jiao, Nanoscale, 2018, 10, 21284.