Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supporting Information for

Modulating Charge Transfer Dynamics for g-C₃N₄ through Dimension and Interface Engineered Transition Metal Phosphide co-catalyst for Efficient Visible-Light Photocatalytic Hydrogen Generation

Fu Zhang,^a Jihua Zhang,^b Jianmin Li,^c Xu Jin,^c Yapeng Li,^a Min Wu,^d Xiongwu Kang,^d Tao Hu,^e Xiaoqi Wang,^c Wei Ren^e and Genqiang Zhang^{*a}

^a Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

^b Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China

^c Research Institute of Petroleum Exploration & Development (RIPED), PetroChina, No. 20 Xueyuan Road, Haidian District, Beijing, 100083, P. R. China

^d New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China

^e International Centre for Quantum and Molecular Structures, Physics Department, Shanghai University, Shanghai 200444, China

Corresponding Author:

G. Q. Zhang, E-mail: gqzhangmse@ustc.edu.cn

Figures

Fig. S1 Low-magnification and high-magnification TEM images of (A, B) pure $g-C_3N_4$, (C, D) Co-glycolate/ $g-C_3N_4$ composites and (E, F) the 2.5CP/CN sample.

Fig. S2 Nitrogen adsorption-desorption isotherms and the corresponding pore size distribution curves (inset) of g- C_3N_4 and 2.5CP/CN samples.

Fig. S3 Low-magnification and high-magnification TEM images of (A, B) 1.25CP/CN, (C, D) 5CP/CN, (E, F) 7.5CP/CN and (G, H) 10CP/CN.

Fig. S4 XRD patterns of the pure g-C₃N₄, Co-Glycolate/g-C₃N₄, CoP/g-C₃N₄ composites with variable CoP mass contents (2.5, 5, 10 wt%).

Fig. S5 FT-IR spectra of the pure $g-C_3N_4$, Co-Glycolate/ $g-C_3N_4$, CoP/ $g-C_3N_4$ composites with variable CoP mass contents (1.25, 2.5, 5 wt%).

Fig. S6 XPS spectra for 2.5CP/CN sample.

Fig. S7 High resolution XPS results of 7.5CP/CN sample.

Fig. S8 XPS spectra for pristine $g-C_3N_4$ and $g-C_3N_4$ after heated with NaH_2PO_2 .

Fig. S9 XRD patterns of (A) the NiP₂/g-C₃N₄ composites with variable NiP₂ mass contents (2, 8, 12 wt%) and (B) the FeP/g-C₃N₄ composites with variable FeP mass contents (2, 6, 10, 20 wt%).

Fig. S10 Low-magnification and high-magnification TEM images of (A, B) 2 wt% NiP₂/g-C₃N₄, (C, D) 8 wt% NiP₂/g-C₃N₄ and (E, F) 12 wt% NiP₂/g-C₃N₄.

Fig. S11 Low-magnification and high-magnification TEM images of (A, B) 2 wt% FeP/g-C₃N₄, (C, D) 6 wt% FeP/g-C₃N₄, (E, F) 10 wt% FeP/g-C₃N₄ and (G, H) 20 wt% FeP/g-C₃N₄.

Fig. S12 Time course of photocatalytic H₂ production for 2.5 wt% Pt/g-C₃N₄ and 2.5CP/CN samples under visible light irradiation (λ > 420 nm) from 300 W Xe lamp using TEOA as the sacrificial agent.

Fig. S13 The UV-vis diffuse spectrum (left axis) and wavelength-dependent quantum efficiency (right axis) of 2.5CP/CN for H_2 evolution (irradiation by a 300 W Xe lamp using a band-pass filter of full width at half maximum (FWHM) = 15 nm).

Fig. S14 Long-term photocatalytic H₂ evolution with 2.5CP/CN sample under simulated solar irradiation (λ > 300 nm) from 300 W Xe lamp using TEOA as the sacrificial agent.

Fig. S15 (A) Time courses of photocatalytic H₂ evolution and (B) photocatalytic H₂ evolution rates over 2.5 wt% CoP/g-C₃N₄/, 8 wt% NiP₂/g-C₃N₄ and 6 wt% FeP/g-C₃N₄ hybrid photocatalysts in 10 vol% triethanolamine (TEOA) aqueous solution under visible light irradiation (λ > 420 nm).

Fig. S16 Time course of H₂ production for 2.5 wt% Pt/g-C₃N₄-NaH₂PO₂ sample under visible light irradiation (λ > 420 nm) from 300 W Xe lamp using TEOA as the sacrificial agent.

Fig. S17 TEM images of 2.5CP/CN sample after 70 h of continuous photocatalytic hydrogen production.

Fig. S18 XRD pattern of 2.5CP/CN sample after 70 h of continuous photocatalytic hydrogen production.

Fig. S19 (A) Co 2p and (B) P 2p XPS survey spectra of 2.5CP/CN sample after 70 h continuous photocatalytic hydrogen production.

Fig. S20 FT-IR spectra of 2.5CP/CN sample after 70 h of continuous photocatalytic hydrogen production.

Fig. S21 EIS Nyquist plots of pure $g-C_3N_4$ and 2.5CP/CN samples.

Fig. S22 (A) UV-vis diffuse reflectance spectra and (B) The Tauc plot of the pure $g-C_3N_4$, Co-Glycolate/ $g-C_3N_4$, CoP/ $g-C_3N_4$ composites with variable CoP mass contents (1.25, 2.5, 5, 10, 20 wt%).

Fig. S23 Total density of states for pure $g-C_3N_4$ (black) and $CoP/g-C_3N_4$ (blue).

Fig. S24 Charge density difference isosurfaces of CoP/g-C₃N₄. The cyan region represents charge depletion, and the yellow region represents charge accumulation. The isosurface value is 0.05 e/Å³. The blue, black, orange and violet spheres represent N, C, P and Co atoms, respectively.

Table S1 ICP results of the as-prepared CoP/g-C₃N₄ samples with variable CoP mass contents (1.25, 2.5, 5, 7.5 and 10 wt%).

Sample	Content (wt%)			
1.25CP/CN	1.17			
2.5CP/CN	2.44			
5CP/CN	4.16			
7.5CP/CN	6.05			
10CP/CN	6.48			

Table S2 ICP results of the as-prepared $NiP_2/g-C_3N_4$ samples with variable NiP_2 mass contents (6, 8 and 10 wt%).

Sample	Content (wt%)		
6NP/CN	4.44		
8NP/CN	6.37		
10NP/CN	8.05		

Table S3 ICP results of the as-prepared FeP/g- C_3N_4 samples with variable FeP mass contents (2, 6 and 10 wt%).

Sample	Content (wt%)			
2FP/CN	2.52			
6FP/CN	6.83			
10FP/CN	8.87			

Table S4 The hydrogen production activity of as-prepared FeP/g- C_3N_4 and NiP₂/g- C_3N_4 samples with variable FeP and NiP₂ mass contents.

Sample	H2 production (umol
	g ⁻¹ h ⁻¹)
6NP/CN	480.1
8NP/CN	655.8
10NP/CN	580.5
2FP/CN	129.1
6FP/CN	296.3
10FP/CN	194.6

Catalyst	Synthetic method	Electron donor	Light source	H_2 production (umol g ⁻¹ h ⁻¹)	Ref.
Ni ₂ P/g-C ₃ N ₄	Mixing the Ni salt, NaH ₂ PO ₂ , g-C ₃ N ₄ and heating method	ΤΕΟΑ	≥ 420 nm	644	1
CoP/g-C ₃ N ₄	Grinding method	TEOA	≥ 420 nm	474.4	2
Ni ₁₂ P ₅ /g-C ₃ N ₄	Solution-phase self- assembly method	TEOA	≥ 420 nm	535.7	3
Ni(OH) ₂ /g-C ₃ N ₄	Precipitation method	TEOA	≥ 400 nm	152	4
NiS/g-C ₃ N ₄	Hydrothermal method	TEOA	≥ 420 nm	482	5
CoP/g-C ₃ N ₄	Reflowing-phosphorization method	ΤΕΟΑ	≥ 420 nm	956.8 (3 h)	Our work
				861.3 (24 h)	
				783.8 (70 h)	

References

1. A. Indra, A. Acharjya, P.W. Menezes, C. Merschjann, D. Hollmann, M. Schwarze, M. Aktas, A. Friedrich, S. Lochbrunner, A. Thomas, M. Driess, Angew. Chem. 129 (2017) 1675-1679.

2. S.-S. Yi, J.-M. Yan, B.-R. Wulan, S.-J. Li, K.-H. Liu, Q. Jiang, Appl. Catal. B Environ. 200 (2017) 477-483.

3. D. Zeng, W.-J. Ong, H. Zheng, M. Wu, Y. Chen, D.-L. Peng, M.-Y. Han, J. Mater. Chem. A 5 (2017) 16171-16178.

4. J. Yu, S. Wang, B. Cheng, Z. Lin, F. Huang, Catal. Sci. Technol. 3 (2013) 1782-1789.

5. J. Hong, Y. Wang, Y. Wang, W. Zhang, R. Xu, ChemSusChem 6 (2013) 2263-2268.