Supporting Information

Ion-matching porous carbons with ultra-high surface area and superior energy storage performance for supercapacitors

Lifeng Zhang*a, Yu Guoa, Kechao Shena, Jinghao Huoa, Yi Liua and Shouwu Guo*a,b

^aSchool of Materials Science and Engineering, Shaanxi University of Science and Technology,

Xian 710021, Shaanxi, China.

^bDepartment of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Corresponding Author:

* E-mail: zhanglifeng@sust.edu.cn; guoshouwu@outlook.com

Figure S1. SEM image of PPy rings.

Figure S2. SEM images of PPC-700: (a) at low-magnification; (b) accidented surface;

(c) wormlike pits.

Figure S3. The morphology of the PPC-600 and PPC-800: (a) SEM image of PPC-600. (b) SEM image of PPC-800. (c) TEM image of PPC-600. (d) TEM image of PPC-800.

Figure S4. High-resolution XPS spectra of PPC-600 (a) C 1s, (c) O 1s, and (e) N 1s; PPC-800 (b) C 1s, (d) O 1s, and (f) N 1s; (g) XPS survey spectra of PPC-600, PPC-700 and PPC-800.

Figure S5. (a) Nitrogen adsorption-desorption isotherms and (b) the corresponding pore size distribution of PPC samples prepared by different KOH amount at 700 °C.

Figure S6. Electrochemical performance of PPC-600 and PPC-800 in 3-electrode test using 6 M KOH electrolyte with a potential window of 1.0 V: (a) Cyclic voltammetry of PPC-600 at various scan rates of 5, 10, 20, 50 and 100 mV s⁻¹; (b) Galvanostatic charge-discharge profiles of PPC-600 at current densities of 1, 2, 5, 10 and 20 A g⁻¹; (c) Cyclic voltammetry of PPC-800 at various scan rates of 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at various scan rates of 1, 2, 5, 10 and 20 A g⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10, 20, 50 and 100 mV s⁻¹; (d) Galvanostatic charge-discharge profiles of PPC-800 at current densities of 1, 2, 5, 10 and 20 A g⁻¹.

Figure S7. Electrochemical performance of PPC samples prepared by different KOH amount at 700 °C in 3-electrode test using 6 M KOH electrolyte with a potential window of 1.0 V: (a) Cyclic voltammetry at various scan rates of 5, 10, 20, 50 and 100 mV s⁻¹ when mass ratio of KOH : PPy equals 3; (b) Galvanostatic charge-discharge profiles at current densities of 1, 2, 5, 10 and 20 A g⁻¹ when mass ratio of KOH : PPy equals 3; (c) Cyclic voltammetry at various scan rates of 5, 10, 20, 50 and 100 mV s⁻¹ when mass ratio of KOH : PPy equals 5; (d) Galvanostatic charge-discharge profiles at current densities of 1, 2, 5, 10 and 20 A g⁻¹ when mass ratio of KOH : PPy equals 3; (c) Cyclic voltammetry at various scan rates of 5, 10, 20, 50 and 100 mV s⁻¹ when mass ratio of KOH : PPy equals 5; (d) Galvanostatic charge-discharge profiles at current densities of 1, 2, 5, 10 and 20 A g⁻¹ when mass ratio of KOH : PPy equals 5; (d) Galvanostatic charge-

Figure S8. (a) capacitive performance at di \Box erent current densities (PPC-X-Y: X means temperature, Y means KOH amount.) (b) Nyquist plots of PPC samples prepared by different KOH amount at 700 °C in a frequency range of 0.01 to 10⁵Hz with 5mV amplitude.

Table S1. Textural properties of PPC samples prepared by different KOH amount at

1	00	°C
	00	

ratio ^a	$SSAb(m^2 - 1)$	Pore Volume (cm ³ g ⁻¹)					
	55A° (III- g ·)	V _{Total}	V ^c _{Small} (%)	$V^{d}_{Close}(\%)$	$V^{e}_{Large}(\%)$		
3	3156.38	2.301	0.241(11%)	0.514(22%)	1.546(67%)		
4	4091.54	2.334	0.062(2%)	0.946(41%)	1.326(57%)		
5	3699.61	2.060	0.263(13%)	0.611(30%)	1.186(57%)		

a) KOH : PPy

^b) Specific Surface Area calculated by Brunauer-Emmett-Teller (BET) method in the relative pressure range of 0.05-0.20

^c) Volume of pores smaller than 0.5 nm in width

^d) Volume of pores between 0.5 and 1 nm in width

^e) Volume of pores larger than 1 nm in width

Carbon source	SSA (m ² g ⁻¹)	Capacitance (F g ⁻¹)	Current density (A g ⁻ ¹)	Electrolyte	Cycles (Current density/Scanning rate)	Capacitance retention	Ref.
РРу	4091.54	397.9	1A g ⁻¹	6 M KOH	30K (10A g ⁻¹)	95%	This work
РРу	2870	318.2	0.5A g ⁻¹	6 M KOH	10K (5A g ⁻¹)	95.8%	[1]
PANi	4073	225	0.5A g ⁻¹	0.5 M H ₂ SO ₄	10K (5A g ⁻¹)	96%	[2]
chitosan	2905	374.7	1A g-1	3 М КОН	20K (200mV/s)	98%	[3]
popcorn	3301	311	10A g ⁻¹	6 M KOH	10K (5A g ⁻¹)	95%	[4]
ZIF-8/PAN	417.9	307.2	1A g ⁻¹	2 M H ₂ SO ₄ (two-electrode)	10K (5A g ⁻¹)	98.2%	[5]
non-fat powdered milk	4051	247	25 A g ⁻¹	6 M KOH (two-electrode)	75K (25A g ⁻¹)	80%	[6]
commercial silicone resin	2896	322	0.5 A g ⁻¹	6 М КОН	10K (5A g ⁻¹)	93.3%	[7]
petroleum asphalt	3581	194	20 A g ⁻¹	6 M KOH	10K (2A g ⁻¹)	95.1%	[8]
phenol formaldehyde resin	1224	388	1A g ⁻¹	1 M H ₂ SO ₄	8K (5A g ⁻¹)	98%	[9]
polyphosphazene	1798	105	0.3A g ⁻¹	6 M KOH (two-electrode)	10K (5A g ⁻¹)	89.5%	[10]
PMMA/bacterial cellulose	2076	266	0.5A g ⁻¹	1 M H ₂ SO ₄	10K (5A g ⁻¹)	95%	[11]
bradyrhizobium japonicum	1275	358	1A g ⁻¹	6 M KOH (two-electrode)	8K (1A g ⁻¹)	91%	[12]
carbon aerogel	450	151	0.5A g ⁻¹	6 M KOH	0.5K (0.5A g ⁻¹)	97.8%	[13]

Table S2. Summary of capacitive performance of carbon-based supercapacitors

References

- L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang and Y. Huang, Energy Environ. Sci., 2013, 6, 2497-2504.
- J. W. To, Z. Chen, H. Yao, J. He, K. Kim, H. H. Chou, L. Pan, J. Wilcox, Y. Cui and Z. Bao, ACS Cent. Sci., 2015, 1, 68-76.
- 3. F. Zhang, T. Liu, M. Li, M. Yu, Y. Luo, Y. Tong and Y. Li, Nano Lett., 2017, 17, 3097-3104.
- J. Hou, K. Jiang, R. Wei, M. Tahir, X. Wu, M. Shen, X. Wang and C. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 30626-30634.
- 5. L.-F. Chen, Y. Lu, L. Yu and X. W. Lou, *Energy Environ. Sci.*, 2017, 10, 1777-1783.
- J. Pokrzywinski, J. K. Keum, R. E. Ruther, E. C. Self, M. Chi, H. Meyer Iii, K. C. Littrell, D. Aulakh, S. Marble, J. Ding, M. Wriedt, J. Nanda and D. Mitlin, *J. Mater. Chem. A*, 2017, 5, 13511-13525.
- 7. J. Yang, J. Hu, M. Zhu, Y. Zhao, H. Chen and F. Pan, J. Power Sources, 2017, 365, 362-371.
- L. Pan, Y. Wang, H. Hu, X. Li, J. Liu, L. Guan, W. Tian, X. Wang, Y. Li and M. Wu, *Carbon*, 2018, **134**, 345-353.
- N. P. Wickramaratne, J. Xu, M. Wang, L. Zhu, L. Dai and M. Jaroniec, *Chem. Mater.*, 2014, 26, 2820-2828.
- W. Liu, S. Zhang, S. U. Dar, Y. Zhao, R. Akram, X. Zhang, S. Jin, Z. Wu and D. Wu, *Carbon*, 2018, **129**, 420-427.
- Q. Bai, Q. Xiong, C. Li, Y. Shen and H. Uyama, ACS Sustainable Chem. Eng., 2017, 5, 9390-9401.
- Q. Yao, H. Wang, C. Wang, C. Jin and Q. Sun, ACS Sustainable Chem. Eng., 2018, 6, 4695-4704.
- 13. Y. Xu, B. Ren, S. Wang, L. Zhang and Z. Liu, J. Colloid Interface Sci., 2018, 527, 25-32.