Supporting Information

Solar-driven Organic Solvents Purification Enabled by Robust Cubic Prussian Blue

Qile Fang^{abc}, Guiliang Li^{abc}, Haibo Lin^{abc} and Fu Liu^{abc}*

^aKey laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China

^b University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China

^cKey Laboratory of Bio-based Polymeric Materials Technology and application of Zhejiang Province, No. 1219 Zhongguan West Rd, Ningbo, 315201, China

Corresponding Author

* E-mail: fu.liu@nimte.ac.cn (Fu Liu)

Figure S1. A home-made collection device in solvent evaporation

Figure S2. SEM image of PB powder prepared from conventional coprecipitation of Fe^{3+} and $Fe(CN)_6^{4-}$.

Figure S3. Photograph of the obtained PB@CF prepared from different precursor concentration of Na₄Fe(CN)₆.

at 20 °C and 40 °C							
Solvents	ΔH at 20 °C	ΔH at 40 °C	Viscosity	Е			
	(kJ mol ⁻¹)	(kJ mol ⁻¹)	$(20 \circ C, mPa \square S)$				
Acetone	31.23	30.10	0.33	20.70			
Toluene	38.12	36.76	0.58	2.38			
Ethanol	43.91	42.30	1.15	24.55			
Water	44.08	43.30	1.00	80.14			
n-propanol	48.96	47.32	2.20	20.33			
DMAC	52.55	51.45	1.15	37.78			
n-hexanol	61.60	60.08	5.27	13.30			
NMP	66.68	65.78	1.80	32.00			

Table S1. The enthalpy change (ΔH) values and dielectric constant (ε) of solvents at 20 °C and 40 °C

Figure S4. (a) Transmittance, reflection and absorptioon curves of bare CF; (b) IR image of the bare CF surface under one sun illumination.

Figure S5. IR image of the PB3@CF surface for different solvents evaporation under one sun illumination, (a) acetone, (b) toluene, (c) ethanol, (d) water, (e) n-propanol, (f) DMAC, (g) n-hexanol, (8) NMP

C, 50 / 0 humany						
Solvents	No PB@CF No sun	PB@CF No sun	No PB@CF 1 sun	PB@CF 1 sun		
Acetone	22.24	97.78	73.70	389.4		
Toluene	1.33	21.47	17.63	136.7		
Ethanol	5.22	13.34	23.65	102.4		
Water	2.24	7.79	25.39	89.20		
n-propanol	1.22	8.66	17.10	81.00		
DMAC	NA	0.83	3.26	23.35		
n-hexanol	~0	0.32	0.91	10.15		
NMP	NA	0.97	NA	7.62		

Table S2. Vaporization rates (mol $m^{-2} h^{-1}$) of solvents at different condition, 24 °C, 50% humidity

NA: no vaporaization rate was detected due to the water absorption of solvent

Calculation of solar-evaporation conversion.

The conversion efficiency is calculated by

$\eta = v\Delta H / P_{\rm in}$

where η is solar-steam conversion efficiency, v is the flux of steam, ΔH denotes the liquid-vapor phase change enthalpy of different solvents, and P_{in} is the solar illumination energy. The interfacial natural evaporation rate was subtracted from the measured interfacial solar evaporation rate to calculate this conversion efficiency.