Supporting Information

Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries:

meeting improved electrochemical activity and enhanced mass transport from

nano to micro scale

Rui Wang,^a Yinshi Li,^{*a} and Ya-ling He^a

Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.

E-mail: ysli@mail.xjtu.edu.cn

Fig. S1 Digital photos of pristine and gradient-pore graphite felt electrodes.

Fig. S2 Distribution and composition of types of oxygen-functional groups in all element on pristine graphite felt, thermally treated graphite felt and gradient-pore graphite felt.

Fig. S3 Electrolyte accessibility of three electrodes in (a) anolyte and (b) catholyte.

Fig. S4 Contact angle measurement of the (a) pristine graphite felt, (b) thermally treated graphite felt and (c) gradient-pore graphite felt.

Fig. S5 CV curve of the pristine graphite felt with the potential windows of -0.7 to -0.2 V.

Fig. S6 Plots of the redox peak current density versus the square root of scan rate for gradient-pore graphite felt in positive electrolyte.

Fig. S7 $-I_{pc}/I_{pa}$ values of the redox peak current density versus the square root of scan rate for thermally treated graphite and gradient-pore graphite felt in positive electrolyte.

Fig. S8 Comparison of VRFB with gradient-pore graphite felt electrodes with previous works.

Fig. S9. Digital photos gradient-pore graphite felt electrode before and after cycling tests.

Ref.	Sample	electrode size	membrane	electrolyte	flow rate
1	CNF-CNT/GF	5 cm^2	N117	2.0 M	/
2	CO ₂ treated CP	5 cm^2	N117	2.0 M	50 mL min ⁻¹
3	Graphene/CF	25 cm^2	N115	1.5 M	60 mL min ⁻¹
4	Bi/GF	5 cm^2	N117	1.6 M	30 mL min ⁻¹
5	rGO/GF	25 cm^2	N117	3.0 M	30 mL min ⁻¹
6	SnO ₂ /GF	25 cm^2	N117	3.0 M	50 mL min ⁻¹
7	N-CB-CF	25 cm^2	N115	2.0 M	60 mL min ⁻¹
8	Nb-WO ₃ /GF	10 cm ²	N115	2.0 M	20 mL min ⁻¹
9	TiO ₂ -C/GF	25 cm^2	N115	1.5 M	60 mL min ⁻¹
10	ZrO ₂ /GF	4 cm^2	N211	1.1 M	/
11	PF-GF	12 cm^2	N115	1.5 M	20 mL min ⁻¹
12	NCS/GF	4 cm^2	N212	1 M	46 mL min ⁻¹
13	FeOOH treated GF	4 cm^2	N115	0.75 M	/
14	B ₄ C/GF	5 cm^2	N117	2 M	50 mL min ⁻¹

Table. S1 Experimantal parameters of comparied works.

References

- 1. M. Park, Y.J. Jung, J. Kim, H. Lee and J. Cho, *Nano Lett.* **2013**, 13 4833-4839.
- 2. T. Liu, X. Li, C. Xu and H. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 4626-4633.
- 3. M. Park, I.Y. Jeon, J. Ryu, J.B. Baek and J. Cho, *Adv. Energy Mater.* **2015**, 5, 1401550.
- 4. B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle and W. Wang, *Nano Lett.* **2013**, 13, 1330-1335.
- 5. Q. Deng, P. Huang, W. Zhou, Q. Ma, N. Zhou, H. Xie, W. Ling, C. Zhou, Y. Yin, X. Wu, X. Lu and Y. Guo, *Adv. Energy Mater.* **2017**, *7*, 1700461.
- 6. S. Mehboobab, G. AliaHyun, J. Shinac, J. Hwanga, S. Abbasab, K. Yoon, C. Heung and Y. Ha, *J. Power Sources* **2018**, 229, 910-921.
- 7. M. Park, J. Ryu, Y. Kim and J. Cho, *Energy Environ. Sci.* 2014, 7, 3727-3735.
- 8. D.M. Kabtamu, J. Chen, Y. Chang and C. Wang, J. Mater. Chem. A 2016, 4, 11472-11480.
- 9. T. Tseng, R. Huang, C. Huang, C. Liu, K. Hsueh and F. Shieu, J. Electrochem. Soc. 2014, 161, 1132-1138.
- 10. H. Zhou, Y. Shen, J. Xi, X. Qiu and L. Chen, *ACS Appl. Mater. Interfaces* **2016**, 8, 15369-15378.
- 11. P. Huang, W. Ling, H. Sheng, Y. Zhou, X. Xu. X.X. Zeng, X. Wu and Y.G. Guo, *J. Electrochem. Soc.* **2018**, 6, 41-44.
- 12. L. Wu, Y. Shen, L. Yu, J. Xi and X. Qiu, Nano Energy 2016, 28, 1928.

- 13. Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu and J. Xi, *Nano Energy* **2018**, 43, 55-62.
- 14. H.R. Jiang, W. Shyy, M.C. Wu, L. Wei and T.S. Zhao, *J. Power Sources* **2017**, 15, 34-42.