Supplementary information

# Solar-energy-facilitated CdS<sub>x</sub>Se<sub>1-x</sub> quantum dot bio-assembly in *Escherichia coli* and *Tetrahymena pyriformis*

Yin-Hua Cui,<sup>a,b,c</sup> Li-Jiao Tian,<sup>\*a</sup> Wen-Wei Li,<sup>a,b</sup> Wei-Kang Wang,<sup>a</sup> Wei Wei,<sup>d,e</sup> Paul K. S. Lam,<sup>\*c</sup> Long-Hua Zhang,<sup>f,g</sup> Peng Zhou,<sup>g</sup> and Han-Qing Yu<sup>a</sup>

<sup>a</sup>CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
<sup>b</sup>USTC-CityU Joint Advanced Research Center, Suzhou, China
<sup>c</sup>State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, SAR, China
<sup>d</sup>Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
<sup>e</sup>University of Chinese Academy of Sciences, Beijing 100049, China
<sup>f</sup>Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
<sup>g</sup>High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230027, China

\*Corresponding authors: Dr. Li-Jiao Tian, E-mail: <u>ljtian@ustc.edu.cn</u>; Prof. Paul K. S. Lam, E-mail:

bhpksl@cityu.edu.cn

This supporting information contains 24-page document, including results, 2 - table, 18 - figures,

references and this cover page.

#### **Experimental Section**

#### Fourier transform infrared (FT-IR) spectra detection

FT-IR spectra of the purified Bio-QDs assembled in *E.coli* were collected using Nicolet iN10 Fourier infrared microspectroscopy (Thermal Fisher Scientific Co., USA) at a wavenumber ranged from 600 to 4000 cm<sup>-1</sup> with a resolution of 4.0 cm<sup>-1</sup>.

# **Photocurrent detection**

The prepared samples were loaded onto Ti sheet for photocurrent detection in 0.1 M Na<sub>2</sub>SO<sub>4</sub> solution. The counter electrode was Pt wire and the reference electrode was Ag/AgCl (KCl, 3 M). A 500 W Xe arc lamp (PLS-SXE500, Trusttech Co., China) was applied as the light source and the detection was performed by an electrochemical workstation (CHI 750e, Chenhua Co., China). A bias voltage of 0.1 V was applied for amperometric i-t curve measurement. All of the measurements were repeated three times.

# Viability test

CdS<sub>x</sub>Se<sub>1-x</sub> Bio-QDs assembled in *E. coli* under light irradiation and in the dark were washed by 10 mM Tris-HCl. A sufficient amount of 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI) were added into *E. coli* and reacted at room temperature in the dark for 30 min. The resulting *E. coli* cells were washed by 10 mM Tris-HCl three times and detected by the SpectraMax M2 plate reader (Molecular Devices Co., USA) or observed by fluorescence microscopy. The detection Excitation/Emission wavelengths of DAPI were 358/461 nm, and the Excitation/Emission wavelengths of PI were 535/615 nm.<sup>1</sup> The amount of dead bacteria was quantified using the PI/DAPI intensities ratio.

#### Fluorescence lifetime imaging microscope observation

Wild type *Caenorhabditis elegans* (*C. elegans*, Bristol strain N2) were purchased from Caenorhabditis Genetics Center (Minneapolis, USA). They were cultured in nematode growth medium (2.5 g/L peptone, 3 g/L NaCl, 1 mM CaCl<sub>2</sub>, 1 mM MgSO<sub>4</sub>,17 g/L agar, 5 mg/L ethanol and 25 mM KPO<sub>4</sub>buffer) with food source *E. coli* OP50 at 20 °C for 60 h.<sup>2</sup> The nematodes were harvested and transferred to a K medium and co-incubated with purified Bio-QDs assembled in *E. coli* JM109 for 8 h.<sup>3</sup> *C. elegans* were washed by K medium for three times for fluorescence lifetime imaging microscope system (ISS Inc., US). The images were recorded with 488 nm excitation wavelength and 20 MHz repetition rate.

# Results

**Characterization of CdS<sub>x</sub>Se<sub>1-x</sub> QDs assembled in the GSH system under UV light irradiation and dark conditions** The chemical information, crystal structures and morphological features of fluorescent material prepared in the UV irradiation group were revealed by Raman, X-ray diffraction (XRD) and HRTEM characterizations. The observed Raman signals contained two peaks at 196 cm<sup>-1</sup> and 279 cm<sup>-1</sup>, which were attributed to Cd-Se and Cd-S chemical bonds, respectively (Fig. S6A). The matter phases and crystal structures of purified fluorescent material were acquired by powder XRD, and the results matched CdS<sub>0.54</sub>Se<sub>0.46</sub> (JCPDS No. 89-3682) crystalline material well (Fig. S6B). The above results prove the CdS<sub>x</sub>Se<sub>1-x</sub> QDs formation in the GSH system with UV irradiation. In fact, CdS<sub>x</sub>Se<sub>1</sub>. <sub>x</sub> QDs was also fabricated in the GSH system without photo assistance, as supported by Raman, X-ray diffraction (XRD) and HRTEM characterizations (Fig. S7).

# Characterization of QDs assembled in T. pyriformis during mechanism study

As shown in Fig. S9A, the Raman peak at 203 cm<sup>-1</sup> was assigned to Cd-Se longitudinal optical phonon-type Raman signals.<sup>4</sup> Nanometer-sized crystalline materials were observed in HRTEM (Fig. S9B). The crystal lattice spacings highlighted in Fig. 9C corresponded to (200) and (110) planes of hexagonal CdS<sub>0.42</sub>Se<sub>0.58</sub> (JCPDS No. 50-0720) and the angle between these two planes was 60°. Besides, the (110) planes of CdS<sub>0.75</sub>Se<sub>0.25</sub> (JCPDS No. 49-1459), CdS (JCPDS No. 41-1049), and CdSe (JCPDS No. 08-0459) were also captured by HRTEM. In addition, the (110) and (103) planes of hexagonal CdS<sub>0.33</sub>Se<sub>0.67</sub> (JCPDS No. 50-0721) were also observed through HRTEM. Together, the above results confirm CdS<sub>x</sub>Se<sub>1-x</sub> QD formation in *T. pyriformis* under UV irradiation.

| Organism                                       | Material                            | Optical properties                            | Method                                                         | Assembly<br>time | Ref.        |
|------------------------------------------------|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------|------------------|-------------|
| Engineered E. coli                             | eered <i>E. coli</i> CdS Em: 384 nm |                                               | Express SpPCS (PCs synthase),<br>γ-glutamylcysteine synthetase | 1 h              | 5           |
| Engineered <i>E. coli</i>                      | CdS                                 | Ex: 350 nm<br>Em: 445-513 nm                  | Express peptide CDS 7                                          | 1.5 h            | 6           |
| E. coli                                        | CdS                                 | -                                             | Add 10 mM phosphate                                            | -                | 7           |
| Acidithiobacillus<br>thiooxidans ATCC<br>19703 | CdS                                 | Ex: 370 nm<br>Em: 470 - 550 nm                | Optimization - Response<br>Surface Methodology                 | 24 h             | 8           |
| Engineered <i>E. coli</i>                      | CdSe/Cd<br>Te                       | -                                             | Express AtPCS<br>(PCs synthase) and/or PpMT<br>(MT) one-step   | 6-12 h           | 9           |
| Engineered E. coli                             | CdTe                                | Em: 450 nm<br>FWHM: 110 nm                    | Overexpress GSH synthesis genes gshA one-step                  | 24 h             | 10          |
| E. coli                                        | CdSe                                | Em: 495-510 nm                                | Optimize the synthesis conditions                              | 4 h              | 11          |
| Engineered S.<br>cerevisiae                    | CdSe                                | Ex: 365 nm<br>Em: 525-635 nm                  | Overexpress GSH metabolism gene                                | -                | 12          |
| Engineered S.<br>cerevisiae                    | CdSe                                | Ex: 400 nm<br>Em: 450–650 nm                  | Overexpress MET6 gene<br>(methionine synthase)                 | 24 h             | 13          |
| Engineered S.<br>cerevisiae                    | CdSe                                | -                                             | Overexpress ADK1 gene<br>(accumulation of ATP)                 | 24 h             | 14          |
| Phanerochaete<br>chrysosporium                 | CdS                                 | Em: 458 nm                                    | Optimize the synthesis pH<br>one-step                          | 12 h             | 15          |
| Earthworm                                      | CdTe                                | Ex: 365 nm<br>Em: 520 nm<br>Lifetime: 4.54 ns | One-step                                                       | -                | 16          |
| E. coli                                        | CdS <sub>x</sub> Se <sub>1-x</sub>  | Ex: 375 nm<br>Em: 525 nm<br>Lifetime: 24.8 ns | Sunlight irradiation                                           | 1 h              | This<br>wor |
| T. pyriformis                                  | CdS <sub>x</sub> Se <sub>1-x</sub>  | Em: 525 nm                                    | UV irradiation                                                 | 24 min           | This<br>wor |

Table S1. Performance of the synthesized Bio-QDs reported in literature

|                     | Results  |                   |          |                |                    |
|---------------------|----------|-------------------|----------|----------------|--------------------|
| QDs                 | Selenite | CdCl <sub>2</sub> | UV light | QDs production | Selenite reduction |
| E. coli-synthesized | +        | +                 | +        | √              | $\checkmark$       |
| E. coli-synthesized | +        | -                 | +        | NO             | $\checkmark$       |
| E. coli-synthesized | -        | +                 | +        | NO             | NO                 |
| -                   | +        | +                 | +        | NO             | NO                 |
| GSH-mediated        | +        | +                 | +        | 1              | √                  |
| GSH-mediated        | +        | -                 | +        | NO             | ~                  |
| GSH-mediated        | -        | +                 | +        | NO             | NO                 |
| -                   | +        | +                 | +        | NO             | NO                 |

# Table S2. Reaction conditions and results of in vitro photo-facilitated QDs synthesis

+, added the materials; -, absent the materials.



**Fig. S1** EEM of purified fluorescence materials synthesized under dark (a) and sunlight irradiation (b) conditions in *E. coli.* 



Fig. S2 FT-IR spectrum of the purified Bio-QDs assembled under sunlight irradiation and in the dark.



**Fig. S3** Morphology and elemental composition of synthesized Bio-QDs assembled in *E. coli* under dark conditions. (a) In-situ Raman spectra of the as-prepared cells showing the characteristic signals of Cd-Se (200 cm<sup>-1</sup>) and Cd-S (~280 cm<sup>-1</sup>) bonds. (b) HRTEM and (c) The corresponding EDX spectrum confirming the existence of Cd, Se and S elements in purified Bio-QDs. (d) Lattice planes of the purified Bio-QDs.



Fig. S4 Photocurrents of homogenated E. coli and the purified Bio-QDs assembled in E. coli in the dark.



Fig. S5 In situ Raman spectrum of Bio-QDs assembled in E. coli under UV irradiation.



**Fig. S6** Fluorescence images show the cell viabilities of *E. coli*, which assembled  $CdS_xSe_{1-x}$  Bio-QDs for 0 h, 4 h and 8 h under sunlight irradiation in the dark. The blue signals stand for the alive cells and the red signals represent the dead cells.



Fig. S7 Viability test of CdS<sub>x</sub>Se<sub>1-x</sub> Bio-QDs assembled in *E. coli* under UV irradiation and dark conditions.



Fig. S8 Fluorescence pictures of controls and fluorescent materials assembled groups under UV irradiation in the GSH system.



Fig. S9 EEM of fluorescence materials produced under dark (a) and UV irradiated (b) conditions in the GSH system.



**Fig. S10** Morphology of synthesized Bio-QDs assembled in the GSH system under UV light irradiation. (a) Raman spectrum showing the characteristic signals of Cd-Se (196 cm<sup>-1</sup>) and Cd-S (279 cm<sup>-1</sup>) bonds. (b) XRD patterns of purified Bio-QDs.



**Fig. S11** Morphology of synthesized Bio-QDs assembled in the GSH system under dark conditions. (a) Raman spectrum showing the characteristic signals of Cd-Se (194 cm<sup>-1</sup>) and Cd-S (290 cm<sup>-1</sup>) bonds. (b) XRD patterns of purified Bio-QDs. (c) Lattice planes of assembled Bio-QDs.



**Fig. S12** Fluorescence lifetimes (a) and photocurrents (b) of Bio-QDs assembled in the GSH system under UV light irradiated and dark conditions.



**Fig. S13** *In vivo* characteristics of the samples collected from the systems with/without 32.5 h UV illumination. The systems contained 10 mM Tris-HCl buffer, 500  $\mu$ M Na<sub>2</sub>SeO<sub>3</sub> and 500  $\mu$ M CdCl<sub>2</sub>. (a, b) Fluorescence EEM spectrum of the samples. Inserts images were collected under bright field. (c) Fluorescence intensities and (d) Raman spectra of the samples. Fluorescence intensities were generated at a 435 nm of excitation wavelength and 550 nm of emission wavelength.



**Fig. S14** Raman spectra of the samples collected from the systems with 32.5 h UV irradiation. The systems contained 10 mM Tris-HCl buffer,  $500 \mu$ M Na<sub>2</sub>SeO<sub>3</sub>,  $500 \mu$ M CdCl<sub>2</sub>, 2.5% methanol and GSH-synthesized QDs.



**Fig. S15** Ratio of the fluorescence intensities of the UV light-irradiated and dark systems in samples with 32.5 h UV irradiation. The systems contained 10 mM Tris-HCl buffer, 2.5% methanol, GSH-synthesized QDs, and different combinations of precursors.



**Fig. S16** Morphology of synthesized Bio-QDs assembled in *T. pyriformis* under UV light irradiation. (a) In-situ Raman spectrum of the as-prepared cells showing the characteristic signals of Cd-Se (203 cm<sup>-1</sup>) bonds. HRTEM (b) and lattice planes (c) of the purified Bio-QDs.



**Fig. S17** Fluorescence intensities of Na<sub>2</sub>SeO<sub>3</sub>- and CdCl<sub>2</sub>-treated *T. pyriformis* cells over time. The recorded fluorescence intensities were acquired using a 396 nm excitation wavelength and 525 nm emission wavelength.



**Fig. S18** (a) FLIM and corresponding bright field images of *C. elegans* after 8-h soaking in Bio-QDs medium. The red and green color represent the high and low amounts of longer fluorescence lifetime materials (Bio-QDs). (b) Bio-QDs location in *C. elegans* was recorded by fluorescence microscopy. Fluorescence images show that Bio-QDs became aggregated in pharynx and vulva and dispersed in gut. The blue fluorescence was attributed to the autofluorescence of *C. elegans*. The yellow fluorescence was assigned to Bio-QDs.

#### References

- 1 C. R. Carvalho, W. R. Clarindo, M. M. Praça, F. S. Araújo and N. Carels, Plant Sci., 2008, 174, 613-617.
- 2 C. J. Zhu, Y. Peng, Z.-H. Tong, L.-Y. Lu, Y.-H. Cui, H.-Q. Yu, *Chemosphere*, 2016, **157**, 65-70.
- 3 X. Wu, Z.-H. Tong, L.-L. Li, H-Q. Yu, Chemosphere, 2013, 93, 2399-2404.
- 4 A. Tu and P. D. Persans, *Appl. Phys. Lett.*, 1991, **58**, 1506-1508.
- 5 S. H. Kang, K. N. Bozhilov, N. V. Myung, A. Mulchandani and W. Chen, *Angew. Chem. Int. Edit.*, 2008, **47**, 5186-5189.
- 6 C. Mi, Y. Wang, J. Zhang, H. Huang, L. Xu, S. Wang, X. Fang, J. Fang, C. Mao and S. Xu, J. Biotechnol., 2011, 153, 125-132.
- 7 F. A. Venegas, L. A. Saona, J. P. Monras, N. Ordenes-Aenishanslins, M. F. Giordana, G. Ulloa, B. Collao, D. Bravod and J. M. Perez-Donoso, *RSC Adv.*, 2017, 7, 40270-40278.
- 8 G. Ulloa, C. P. Quezada, M. Araneda, B. Escobar, E. Fuentes, S. A. Álvarez, M. Castro, N. Bruna, R. Espinoza-González, D. Bravo and J. M. Pérez-Donoso, *Front. Microbiol.*, 2018, **9**, 234.
- 9 T. J. Park, S. Y. Lee, N. S. Heo and T. S. Seo, Angew. Chem. Int. Edit., 2010, 49, 7019-7024.
- 10 J. P. Monras, V. Diaz, D. Bravo, R. A. Montes, T. G. Chasteen, I. O. Osorio-Roman, C. C. Vasquez and J. M. Perez-Donoso, *PLoS ONE*, 2012, **7**, e48657.
- 11 Z. Yan, J. Qian, Y. Gu, Y. Su, X. Ai and S Wu, *Mater. Res. Express*, 2014, **1**, 015401.
- 12 Y. Li, R. Cui, P. Zhang, B. B. Chen, Z. Q. Tian, L. Li, B. Hu, D. W. Pang and Z. X. Xie, *ACS Nano*, 2013, **7**, 2240–2248. 13 M. Shao, R. Zhang, C. Wang, B. Hu, D. Pang and Z. Xie, *Nano Res.*, **11**, 2498-2511.
- 14 R. Zhang, M. Shao, X. Han, C. Wang, Y. Li, B. Hu, D. Pang, Z. Xie, Int. J. Nanomed., 2017, 12, 3865-3879.
- 15 G. Chen, B. Yi, G. Zeng, Q. Niu, M. Yan, A. Chen, J. Du, J. Huang and Q. Zhang, *Colloid. Surface. B*, 2014, **117**, 199-205.
- 16 S. R. Stürzenbaum, M. Höckner, A. Panneerselvam, J. Levitt, J. S. Bouillard, S. Taniguchi, L. A. Dailey, R. A. Khanbeigi, E. V Rosca, M. Thanou, K. Suhling, A. V. Zayats and M. Green, *Nat. Nanotechnol.*, 2013, **8**, 57–60.