# Supporting Information

# PEDOT Engineered Bi<sub>2</sub>O<sub>3</sub> Nanosheet Arrays for Flexible

### Asymmetric Supercapacitors with Boosted Energy Density

Shizheng Zheng, <sup>a</sup> Yang Fu, <sup>a</sup> Lijun Zheng, <sup>a</sup> Zhengyou Zhu, <sup>a</sup> Jian Chen, <sup>a</sup> Zhiqiang Niu<sup>b</sup>

and Dachi Yang<sup>a</sup>\*

<sup>a</sup> Department of Electronics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China <sup>b</sup> Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300350, P. R. China Corresponding E-mail: yangdachi@nankai.edu.cn

### Summary

- 1. Experimental section
- 2. Figures for supporting information
- 3. Table
- 4. References

#### **Experimental Section**

#### Synthesis of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT negative electrode

Specifically, prior to the growth of Bi<sub>2</sub>O<sub>3</sub>, CC was activated in concentrated H<sub>2</sub>SO<sub>4</sub> and HNO<sub>3</sub> mixture (V<sub>H2SO4</sub>: V<sub>HNO3</sub>= 3:1) for 6 hours, and then washed with de-ionized water, acetone and alcohol to remove the acid and organic impurities. Subsequently, a piece of activated CC (3\*2 cm) was immersed into the solution consist of 0.97 g Bi(NO<sub>3</sub>)<sub>3</sub>, 24 mL alcohol and 12 mL ethylene glycol, stirring for 30 min. Then, the mixture was transferred into the stainless autoclave and heated at 160  $^{\circ}$ C for 5 h. Finally, the  $CC/Bi_2O_3$  NAs were obtained after thoroughly washing in alcohol and de-ionized water and finally drying in 60°C oven. The mass loading of Bi<sub>2</sub>O<sub>3</sub> is calculated around 1.55 mg cm<sup>-2</sup>. To construct CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT NAs, a piece of CC/Bi<sub>2</sub>O<sub>3</sub> (1\*1.2 cm) was immersed in a cell containing 0.01 M EDOT, 0.03 M SDS and 0.07 M LiClO<sub>4</sub>. Then, electrodepositions were further conducted at 1 V potentiostatic mode with Ag/AgCl as reference electrode for various durations (300 s, 500 s and 800 s). As contrast,  $CC/Bi_2O_3$  that handled with 1 V potentiostatic deposition in the electrolyte of 0.03 M SDS and 0.07 M LiClO<sub>4</sub> was conducted. Additionally, CC/Bi<sub>2</sub>O<sub>3</sub>@rGO electrode was fabricated by immersing CC/Bi<sub>2</sub>O<sub>3</sub> in 0.5 mg mL<sup>-1</sup> GO aqueous for 5 min and subsequently reduced by N<sub>2</sub>H<sub>4</sub> vapor.

#### Synthesis of NiMoO<sub>4</sub>/CC positive electrode

A piece of activated CC was immersed into a mixture containing 0.24 g NiCl<sub>2</sub>, 0.24 g NaMoO<sub>4</sub> and 0.3 g urea, continuously stirring for 30 min. Then the solution was transfer to a 50 mL stainless autoclave and heated at 150 °C for 8 h. After naturally cooling to room temperature, the CC was washed with de-ionized water and alcohol to remove remaining impurities, and then dried in air. Finally, NiMoO<sub>4</sub>/CC electrode was obtained after vacuum annealing at 450°C for 2h.

#### Materials characterization

As-prepared samples were characterized by X-ray diffraction (XRD) with Cu K $\alpha$  radiation source ( $\lambda$  = 1.5406 Å), field-emission scanning electron microscopy (FE-SEM,

JEOL-6701F) with energy dispersive X-ray spectroscopy (EDS, Oxford), transmission electron microscopy (TEM, JEOL-2010), high resolution TEM (HRTEM, JEOL-2010), Raman spectroscopy (RTS-HiR-AM,  $\lambda$ = 532 nm) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi).

#### **Electrochemical evaluations**

For the capacitance evaluations, all electrochemical measurements were performed in 1 M KOH solution with platinum foils as the counter electrode and Hg/HgO as the reference electrode, respectively. CC/Bi<sub>2</sub>O<sub>3</sub> and CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (300 s, 500 s and 800 s) NAs with operational area of 1 cm<sup>2</sup> were directly utilized as the working electrodes. Electrochemical workstation (CH Instruments, CHI760e) was utilized for cyclic-voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge tests. EIS was recorded with AC voltage amplitude of 5 mV and a frequency range from 100 kHz to 0.01 Hz. Investigations on galvanostatic charge/discharge were carried out from -1.1 V to -0.2 V at 1, 2, 4, 8 and 16 mA cm<sup>-2</sup>, respectively.

Capacitance(Cs), energy density (E) and power density (P) were calculated according to the following equations:

$$Cs = \frac{\int I \, dV}{vm\Delta V} \quad or \quad Cs = \frac{\int I \, dV}{vS\Delta V}$$

where I (A), v (V s<sup>-1</sup>),  $\Delta$ V (V), m (g) and S (cm<sup>2</sup>) are corresponding to response current, scan rate, potential window, the mass of active material and the effective electrode area, respectively.

$$Cs = \frac{I\Delta t}{S\Delta V}$$

where I is the discharge current,  $\Delta t$  is the discharge time,  $\Delta E$  is the potential window during the discharge process and S is the effective electrode area.

$$E = \frac{CV^2}{2U}$$
$$P = \frac{E}{t}$$

Where C is total capacitance of the device, V is the cell voltage, U is the device volume, and t is the dischargetime.

### ASC device assembly

CC/NiMoO<sub>4</sub> and CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) were selected as the positive and negative electrodes respectively to assemble the asymmetric device. PVA/KOH electrolyte was prepared with 6 g PVA, 6g KOH and 60 mL de-ionized water and kept on stirring at 85°C for 3 h. As-prepared PVA/KOH electrolyte was evenly pasted onto the CC/NiMoO<sub>4</sub> and CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT NAs electrodes respectively and dried at room temperature. Finally, the two dried electrodes were stacked together with a piece of filter in-between



**Fig. S1** (a) Amplified SEM image of ultrathin CC/Bi<sub>2</sub>O<sub>3</sub> nanosheets with vertical orientation and interconnected network structure. (b) HRTEM image of CC/Bi<sub>2</sub>O<sub>3</sub> with lattice fringes of 0.28 nm and 0.32 nm, corresponding to the facets of (200) and (111), respectively.



**Fig. S2** XRD pattern of pristine carbon cloth (CC) with two diffraction peaks located at 25° and 43°, respectively.



**Fig. S3** (a)C 1s high –resolution spectra of CC/Bi<sub>2</sub>O<sub>3</sub> with three fitting peaks (O-C=O, C=O and C-C). (b) O 1s high –resolution spectra of CC/Bi<sub>2</sub>O<sub>3</sub> with three fitting peaks (O-C=O, C=O and Bi-O). (c) S 2p high –resolution spectrum of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) with two Bi 4f peaks and S 2p peak.



**Fig. S4** (a) Galvanostatic charge/discharge of CC/Bi<sub>2</sub>O<sub>3</sub> and CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (300 s, 500 s, 800 s) at current density of 1 mA cm<sup>-2</sup>. (b) CV curves of CC/Bi<sub>2</sub>O<sub>3</sub> at various scanning rate (from 10 to 100 mV s<sup>-1</sup>) at voltage window of-1.1 V -0 V. (c) GCD of CC/Bi<sub>2</sub>O<sub>3</sub> at various current densities (from 1 to 16 mA cm<sup>-2</sup>) at voltage window of -1.1 V to -0 .2 V. (d) Rate performance of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) with various current densities (from 1 to 16 mA cm<sup>-2</sup>).



Fig. S5 CV curves comparison between CC/Bi $_2O_3$  and CC/Bi $_2O_3$ @rGO at scanning rate of 10 mV s<sup>-1</sup>.



**Fig. S6** XRD patterns of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) measured at -1 V and 0 V after 100 CV cycles.



**Fig. S7** (a) 2400 cycles stability of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) scanned at rate of 100 mV s<sup>-1</sup>. The inset is the CV curves that scanned at cycles of 1, 600, 1200, 1800 and 2400, respectively. (b) SEM image of CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) NAs after 2400 CV cycles that scanned at 100 mV s<sup>-1</sup>.



Fig. S8 (a) SEM image and the corresponding EDS mapping (b) of NiMoO<sub>4</sub> vertical on CC.



**Fig. S9** XPS of CC/NiMoO<sub>4</sub> NAs positive electrode, (a) survey spectrum, (b) Mo 3d high-revolution spectrum, (c) Ni 2p high-revolution spectrum, (d) O 1s high-revolution spectrum.



**Fig. S10** EIS plots of as-assembled CC/NiMoO<sub>4</sub> and CC/Bi<sub>2</sub>O<sub>3</sub>@PEDOT (500 s) ASC device with frequency ranged from 0.01Hz to 100000 Hz. The inset is the corresponding amplified portion that marked in red.



**Fig. S11** GCD stability (3000 cycles) of as-assembled ASC device measured at current density of 8 mA cm<sup>-2</sup>. The inset is the corresponding GCD curve of the 1 to 8 cycles and 2994 to 3000 cycles, respectively.



Fig. S12 Practical application of two assembled ASC device in series to power a red

LED light.

Table 1 Recent  $Bi_2O_3$ -based negative electrodes and their specific or areal

| Electrode materials                                   | Specific/areal capacitence | Current density         | Ref.         |
|-------------------------------------------------------|----------------------------|-------------------------|--------------|
| $Bi_2O_3$ on Ni foam                                  | 557 F g <sup>-1</sup>      | 1 Ag <sup>-1</sup>      | [1]          |
| Bi <sub>2</sub> O <sub>3</sub> on ESCNF               | 783 mF cm <sup>-2</sup>    | 5 mV s <sup>-1</sup>    | [2]          |
| Bi <sub>2</sub> O <sub>3</sub> /AC                    | 466 Fg <sup>-1</sup>       | 1 Ag <sup>-1</sup>      | [3]          |
| Bi <sub>2</sub> O <sub>3</sub> /AC                    | 332.6 F g <sup>-1</sup>    | 1 A g <sup>-1</sup>     | [4]          |
| Bi <sub>2</sub> O <sub>3</sub> NTs- graphene          | 69.3 mF cm <sup>-2</sup>   | 0.1 mA cm <sup>-2</sup> | [5]          |
| Bi <sub>2</sub> O <sub>3</sub> nanorods               | 1350 F g <sup>-1</sup>     | 0.1 A g <sup>-1</sup>   | [6]          |
| 3D hierarchical $Bi_2O_3$                             | 832 F g <sup>-1</sup>      | 1 A g <sup>-1</sup>     | [7]          |
| Rod-like Bi <sub>2</sub> O <sub>3</sub> nanoparticles | 528 F g <sup>-1</sup>      | 5 mV s <sup>-1</sup>    | [8]          |
| Flower-like Bi <sub>2</sub> O <sub>3</sub>            | 545 mF cm <sup>-2</sup>    | 3 mA cm <sup>-2</sup>   | [9]          |
| CC/Bi <sub>2</sub> O <sub>3</sub> /PEDOT              | 1700 mF cm <sup>-2</sup>   | 10 mV s <sup>-1</sup>   | This<br>work |
| CC/Bi <sub>2</sub> O <sub>3</sub> /PEDOT              | 1096 F g <sup>-1</sup>     | 10 mV s <sup>-1</sup>   | This<br>work |

capacitance under various current densities.

### References

- 1 N. M. Shinde, Q. X. Xia, J. M. Yun, S. Singh, R. S. Mane, K. H. Kim, Dalton Trans., 2017, **46**, 6601-6611.
- L. Li, X. Zhang, Z. Zhang, M. Zhang, L. Cong, Y. Pan, S. Lin, J. Mater. Chem. A, 2016, *4*, 16635-16644.
- 3 J. Li, Q. Wu, G. Zan, Eur. J. Inorg. Chem. 2015, **2015**, 5751-5756.
- 4 S. Wang, C. Jin, W. Qian, J. Alloy Compd., 2014, *615*, 12-17.
- 5 K. Gopalsamy, Z., Xu, B. Zheng, T. Huang, L. Kou, X. Zhao, C. Gao, Nanoscale, 2014, *6*, 8595-8600.
- 6 H. Su, S. Cao, N. Xia, X. Huang, J. Yan, Q. Liang, D. Yuan, J. Appl. Electrochem.,

2014*, 44,* 735-740.

- 7 J. Sun, J. Wang, Z. Li, Z. Yang, S. Yang, RSC Adv., 2015, *5*, 51773-51778.
- 8 X. Huang, W. Zhang, Y. Tan, J. Wu, Y. Gao, B. Tang, Ceram. Int., 2016, **42**, 2099-2105.
- H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Adv. Energy Mater., 2015, 5, 1401882.