ZnO nanoarrays modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal

batteries

Changzhi Sun,^{a,b} Yanpei Li,^{a,b} Jun Jin,^{a,b} Jianhua Yang^{a,b} and Zhaoyin Wen^{a,b*}

a CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

*Email - zywen@mail.sic.ac.cn

Fig. S1 (a) SEM image of the NF@ZnO seeds (the inset is its photograph), (b) high-magnification SEM image of NF@ZnO seeds, (c) elemental distribution mappings and (d) XRD patterns of the NF@ZnO seeds.

Fig. S2 Initial discharge profiles of Li-NF and Li-ZMNF half cells.

Fig. S3 Voltage hysteresis of Li plating/stripping median voltage at 1 mA cm⁻² with a total capacity of 1.0 mA h cm⁻²

Fig. S4 (a) CE and (b) first discharge/charge profiles of Li-NF and Li-ZMNF half cells at 5.0 mA cm^{-2} for 1.0 mA h cm^{-2} .

Fig. S5 Liquid Li wetting on (a) pristine Ni foam and (b) ZMNF at ~300°C.

Fig. S6 SEM image and elemental distribution mappings in the region 2 near the red line.

Fig. S7 XRD patterns of the region 1.

Fig. S8 The zoom-in images of voltage profiles of symmetric cells cycled at (a) 1 mA cm⁻², (b) 2 mA cm⁻², and (c) 5 mA cm⁻² for 50th cycles.

Fig. S9 Voltage hysteresis of charge/discharge median voltage at rates from 0.5 C to 10 C.

Fig. S10 CE of LFP-based full cells at 1 C.

Table S1.	Comparison	of Coulombic	efficiency	of Li	plating/strippi	ng on/from	various	current
collectors w	vith ether-base	ed electrolyte.						

Current collectors	Current density (mA cm ⁻²)	Area capacity (mAh cm ⁻²)	performance	Ref	year
Ni@CuNWs	2	1	96% for 100 cycles	1	2017
RGO@CuNWs	1	2	97% for 200 cycles	2	2018
N-doped GO@Ni foam	1	1	98% for 200 cycles	3	2018
CroQ@Cro foil	0.5	1	94% for 180 cycles	4	2019
CuO@Cu Ioli	1	0.5	94% for 180 cycles	4	2018
MnO ₂ @Ni foam	1	1	98.9% for 100 cycles	5	2018
	1	1	98.5% for 300 cycles		
ZMNF	3	1	97.9% for 200 cycles our wor		work
	5	1	96.9% for 120 cycles		

Note: 1 M LiTFSI in DOL/DME with LiNO3 (2 wt% LiNO3 for Ni@CuNWs, 1 wt% LiNO3 for the others)

Current collectors	Electrolyte	Current density (mA cm ⁻²)	Areal capacity (mAh cm ⁻²)	performance	
Ni@CuNWs1	1M LiPF ₆ in EC/DEC	3	1	225 h	
$C_{\rm P}O@C_{\rm P}$ foil ⁴	1 M LiTFSI in	0.5	0.5	700 h	
	DOL/DME, 1% LiNO3	0.3	0.3		
Mr.O. Wi from	1 M LiTFSI in	1	1	1600 h	
	DOL/DME, 1% LiNO ₃	1	2	350 h	
Carbonized 71E 96	1M LiPF ₆ in	1	1	700 h	
Carbonized ZIF-8	EC/EMC/DMC, VC	3	1	60 h	
	1 M L TESL	1	1	~200 h	
PI-ZnO matrix ⁷	DOL/DME, 1% LiNO ₃	3	1	~70 h	
		5	1	~40 h	
	1 M LiTFSI in DOL/DME, 1% LiNO3	1	2	1200 h	
ZMNF		2	2	800 h	
		5	2	300 h	

Table S2. Comparison of galvanostatic cycling performance of symmetric Li cells with differentcomposite Li anodes prepared by Li infusion method.

References

- L.-L. Lu, Y. Zhang, Z. Pan, H.-B. Yao, F. Zhou and S.-H. Yu, *Energy Storage Materials*, 2017, 9, 31-38.
- 2. K. Yan, B. Sun, P. Munroe and G. Wang, *Energy Storage Materials*, 2018, **11**, 127-133.
- R. Song, B. Wang, Y. Xie, T. Ruan, F. Wang, Y. Yuan, D. Wang and S. Dou, *Journal of Materials Chemistry A*, 2018, 6, 17967-17976.
- 4. C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang and Q. H. Yang, *Advanced Energy Materials*, 2018, **8**, 1703404.
- 5. B. Yu, T. Tao, S. Mateti, S. Lu and Y. Chen, *Advanced Functional Materials*, 2018, **28**, 1803023.
- 6. M. Zhu, B. Li, S. Li, Z. Du, Y. Gong and S. Yang, *Advanced Energy Materials*, 2018, **8**, 1703505.
- 7. Y. Y. Liu, D. C. Lin, Z. Liang, J. Zhao, K. Yan and Y. Cui, *Nat. Commun.*, 2016, **7**, 9.