Electronic Supplementary Material

High-Performance Hierarchical Ultrathin Sheet-Based CoOOH Hollow Nanospheres with Rich Oxygen Vacancies for Oxygen Evolution Reaction

Huan Wang,[‡] Er-ming Feng,[‡] Yan-ming Liu, and Chun-yang Zhang *

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.

‡ These authors contributed equally to this work.

* E-mail: cyzhang@sdnu.edu.cn

Fig. S1 (a, b) SEM images, (c) TEM image and (d) XRD pattern of the Co-glycerate nanospheres.

Fig. S2 TEM images of the intermediates collected at different reaction time during the transformation from the Co-glycerate solid nanospheres to the Pi-Co-glycerate hollow nanosphere: (a) 0 h, (b) 6 h, (c) 24 h, and (d) 72 h.

Fig. S3 Co 2p (a), O 1s (b), P 2p (c) and C 1s (d) XPS spectra of the Pi-Co-glycerate hollow nanospheres. The Co 2p spectra exhibits two main peaks at 797.8 and 781.9 eV, which are ascribed to Co $2p_{1/2}$ and Co $2p_{3/2}$, respectively. The binding energy of two shakeup satellites (identified as "Sat.") at 789 and 804 eV are corresponding to Co with oxidation states (Co²⁺).¹ The peak of O 1s can be deconvoluted into two peaks, with one peak at 530.8 eV for the O atom in H₂PO₂⁻ group ² and the other peak at 531.8 eV for the O-H group ³. The peak of P 2p can be deconvoluted into two peaks, with the peak at 132.6 eV for the P-H group ⁴ and the peak at 133.5 eV for the P-O binding. The C1s peak can be deconvoluted into two peaks (284.8 and 286.6 eV), corresponding to carbon atom in C-C binding and C-O binding. These results confirms that the inorganic-organic hybrid Pi-Co-glycerate hollow nanospheres are successfully fabricated.

Fig. S4 XPS survey spectra of the Pi-Co-glycerate hollow nanospheres and the hierarchical CoOOH

hollow nanospheres.

Fig. S5 SEM images (a and b), TEM image (c) and XRD pattern (d) of the Co-glycerate hollow nanospheres obtained by using similar synthesis approach of the Pi-Co-glycerate except for NaH₂PO₂. The SEM images reveal that the obtained samples are nanospheres (Figure S5a-b), but the TEM image show that they are hollow (Figure S5c). The diffraction peak at 11° suggests the hollow nanospheres are Co-glycerate (Figure S5d). ⁵ These results confirm that the hollow in the center of Co-glycerate is formed via high temperature-mediated component dissolution.

Fig. S6 XRD pattern of the Pi-Co-glycerate hollow nanospheres

Fig. S7 EDS image of the Pi-Co-glycerate hollow nanospheres. There are four elements (i.e., C, O, P, and Co) in the Pi-Co-glycerate hollow nanospheres. The molar rate of Co, P, C and O is 1 : 1.2 : 0.4 : 8.7. The molecular formula of the Pi-Co-glycerate hollow nanosphere is $Co_3(H_2PO_2)_{3.6}(C_3H_6O_3)_{0.4}$ based on EDS analysis and charge balance. The C/H/N elemental analysis (Table S1) confirms the chemical composition of the Pi-Co-glycerate hollow nanosphere. The 3.22 wt % carbon and 2.15 wt % hydrogen in the Pi-Co-glycerate hollow nanosphere are consistent with the calculated results (C 4.73 wt % and H 2.11 wt %)

Fig. S8 TEM images (a and b) and XRD pattern (c) of the CoP hollow nanospheres synthesized using Co-glycerate solid nanospheres as the template and annealed at 400 °C for 1 h with a heating rate of 1 °C min⁻¹ in Ar atmosphere in a tube furnace device. After phosphorization in a tube furnace device, the CoP hollow nanospheres with thick shell are obtained (Fig. S8a, b), which are different from the Pi-Co-glycerate produced in a teflon autoclave. The diffraction peaks are consistent with the orthorhombic CoP (JCPDS No.29-0497), the weak peak indicates the low crystalline (Fig. S8c).

Fig. $\mathbf{S9}$ EDS image of the hierarchical ultrathin sheet-based CoOOH hollow nanospheres. The molar

rate of Co and O is 1 : 1.6.

Fig. S10 SEM images of sample obtained using the template Pi-Co-glycerate hollow nanospheres

without Nafion membrane.

Fig. S11 TEM images of the products obtained using the Co-glycerate hollow nanospheres as the

templates, with other conditions remaining no change.

Fig. S12 SEM (a, b), TEM images (c) and XRD pattern (d) of the γ -CoOOH nanosheets.

Fig. S13 CV curves of the hierarchical CoOOH hollow nanospheres (a) and the γ -CoOOH nanosheets (b) at different scan rates.

Fig. S14 (a) OER chronopotentiometric measurements of the hierarchical CoOOH hollow nanospheres at the current density of 10 mA cm⁻² (magenta) and 100 mA cm⁻² (black) for 12 h. (b) Nyquist plots of the hierarchical CoOOH hollow nanospheres (magenta) and the γ -CoOOH nanosheets (black) at 0.6 V vs Hg/HgO.

Fig. S15 XRD pattern of the hierarchical CoOOH hollow nanospheres after OER test.

Table S1. C/H/N elemental analysis of the Co-glycerate solid nanosphere, the Co-glycerate hollow

nanosphere, and the Pi-Co-glycerate hollow nanosphere.	
--	--

	Co-glycerate solid nanosphere	Co-glycerate hollow nanosphere	Pi-Co-glycerate hollow nanosphere
C wt%	26.04	15.97	4.73
H wt%	3.96	3.19	2.11

Table S2. Comparison of the electrochemical OER properties of the hierarchical CoOOH hollow

nanospheres with those of the reported Co-based nanostructures.

electrode materials	η @10 mAcm ⁻²	η @200 mAcm ⁻²	Tafel Slope	electrolyte	substrate	Ref.
	(mV)	(mV)	(mV dec ⁻¹)	КОН		
CoOOH porous nanosheet arrays	330	> 370	56.4	1.0 M	carbon fiber	б
Ir-Co(OH) ₂ nanosheet	373	> 570	70.2	1.0 M	glassy carbon	7
Co ₃ O ₄ -C porous nanowire arrays	290	> 570	70	0.1 M	Cu foil	8
Co(OH) ₂ -TCNQ nanowire arrays		~ 370	101	1.0 M	copper foam	1
3D Co(OH)F microspheres	313	> 370	52.8	1.0 M	glassy carbon	9
FeCoP ultrathin nanosheet arrays		~ 370	63	1.0 M	nickel foam	10
Co-MOF ultrathin nanosheets	370	> 370	103	1.0 M	nickel foam	11
CoSe ₂ hollow microsphere	330	> 470	79	1.0 M	glassy carbon	12
Ni _{0.6} Co _{1.4} P nanocages	300	> 570	80	1.0 M	glassy carbon	13
NiCo ₂ O ₄ necklace-like	280	> 370	63	1.0 M	nickel foam	14
Co ₃ O ₄ porous nanotubes	285	> 470	80	1.0 M	nickel foam	15
Co ₃ O ₄ /Co-Fe oxide DSNBs	297	> 370	61	1.0 M	glassy carbon	16
activated Mn-Co oxyphosphide	320	> 370	52	1.0 M	glassy carbon	17
this work	275	340	49	1.0 M	nickel foam	

References:

- D. Wu, Y. C. Wei, X. Ren, X. Q. Ji, Y. W. Liu, X. D. Guo, Z. A. Liu, A. M. Asiri, Q. Wei and X. P. Sun, *Adv. Mater.*, 2018, **30**, 1705366.
- L. S. Xie, R. Zhang, L. Cui, D. N. Liu, S. Hao, Y. J. Ma, G. Du, A. M. Asiri and X. P. Sun, *Angew. Chem.*, 2017, 56, 1064-1068.
- H. Wang, D. Y. Yong, S. C. Chen, S. L. Jiang, X. D. Zhang, W. Shao, Q. Zhang, W. S. Yan, B. C.
 Pan and Y. Xie, *J. Am. Chem. Soc.*, 2018, 140, 1760-1766.
- 4. J. L. Xie, Y. H. Zhou, L. H. Li, J. H. Zhang and J. L. Song, Dalton T., 2017, 46, 9339-9343.
- 5. L. F. Shen, L. Yu, H. B. Wu, X. Y. Yu, X. G. Zhang and X. W. Lou, Nat. Commun., 2015, 6, 6694.
- 6. S. H. Ye, Z. X. Shi, J. X. Feng, Y. X. Tong and G. R. Li, Angew. Chem., 2018, 57, 2672-2676.
- Y. K. Zhang, C. Q. Wu, H. I. Jiang, Y. X. Lin, H. J. Liu, Q. He, S. M. Chen, T. Duan and L. Song, *Adv. Mater.*, 2018, **30**, 1707522.
- 8. T. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- S. H. Wan, J. Qi, W. Zhang, W. N. Wang, S. K. Zhang, K. Q. Liu, H. Q. Zheng, J. L. Sun, S. Y. Wang and R. Cao, *Adv. Mater.*, 2017, 29, 1700286.
- 10. L. Zhou, M. F. Shao, J. B. Li, S. Jiang, M. Wei and X. Duan, Nano Energy, 2017, 41, 583-590.
- S. L. Zhao, Y. Wang, J. C. Dong, C. T. He, H. J. Yin, P. F. An, K. Zhao, X. F. Zhang, C. Gao, L. J. Zhang, J. W. Lv, J. X. Wang, J. Q. Zhang, A. M. Khattak, N. A. Khan, Z. X. Wei, J. Zhang, S. Q. Liu, H. J. Zhao and Z. Y. Tang, *Nat. Energy*, 2016, 1, 16184.
- 12. X. B. Liu, Y. C. Liu and L. Z. Fan, J. Mater. Chem. A, 2017, 5, 15310-15314.
- 13. B. C. Qiu, L. J. Cai, Y. Wang, Z. Y. Lin, Y. P. Zuo, M. Y. Wang and Y. Chai, *Adv. Funct. Mater.*, 2018, 28, 1706008.

- 14. S. J. Peng, F. Gong, L. L. Li, D. S. Yu, D. Ji, T. X. Zhang, Z. Q. Hu, Z. Zhang, S. L. Chou, T. R. Zhang, Y. R. Du and S. Ramakrishna, J. Am. Chem. Soc., 2018, 140, 13644-13653.
- 15. H. Wang, S. F. Zhuo, Y. Liang, X. L. Han and B. Zhang, Angew. Chem., 2016, 55, 9055-9059.
- 16. X. Wang, L. Yu, B. Y. Guan, S. Song and X. W. D. Lou, Adv. Mate., 2018, 30, 1801211.
- 17. B. Y. Guan, L. Yu and X. W. D. Lou, Angew. Chem., 2017, 56, 2386-2389.