Supporting Information

Oxygen Vacancies Promoting the Electrocatalytic Performance of the CeO₂

Nanorods as the Cathode Materials for Li-O₂ Batteries

Yue Hou,^{a,†} Jun Wang,^{a,†} Chuanxin Hou,^a Yuqi Fan,^b Yanjie Zhai,^a Hongyu Li,^a Feng Dang,^{a*} Shulei Chou,^{c*}

Figure S1. SEM and TEM images of Ce@120 nanorods(a)-(b), and Ce@200 nanorods (c)-(d).

Figure S2. High-resolution XPS spectra of Ce@120 for survey curve(**a**), Ce 3d(**b**) and O 1s(**c**).

Figure S3. High-resolution XPS spectra of Ce@200 for survey curve(**a**), Ce 3d(**b**) and O 1s(**c**).

Figure S4. The initial discharge/charge profiles of the LOBs from 2.35 to 4.35 V for the pure carbon paper.

Figure S5. The corresponding typical discharge/charge profiles of the Ce@120 cathode(a) and the Ce@200 cathode(b) LOBs for selected cycles under a specific capacity limit of 600 mAh g^{-1} at 100 mA g^{-1} .