Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

Facile formation of CoN₄ active sites onto SiO₂ support to achieve robust CO₂ and protons reduction in a noble-metal-free photocatalytic system

Jun-Chao Hu, Meng-Xi Gui, Wu Xia, Jin Wu, Yong-Ning Zhou, Ningdong Feng, Junwu Xiao, Hongfang Liu, Chen-Ho Tung, Li-Zhu Wu and Feng Wang*

Table of Contents

- 1. Chemicals
- 2. X-Ray diffraction pattern of g-C₃N₄
- 3. UV-vis diffuse reflectance spectrum of g-C₃N₄
- 4. UV-vis diffuse reflectance spectra of raw SiO₂, NH₂-SiO₂ and CoN₄-SiO₂
- 5. IR spectra
- 6. XPS spectra
- 7. Photocatalytic syngas production in CH₃CN
- 8. Emission spectra of g-C₃N₄ in the presence of TEA
- 9. Comparison of the reported heterogeneous photocatalytic syngas production systems

1. Chemicals

Tetraethylorthosilicate (TEOS), *γ*-aminopropyltrimethoxysilane (APTMS), triethylamine, ammonium hydroxide $(NH_3 \cdot H_2O,$ 25%-28%), triethylamine (TEA) and cobalt chloride hexahydrate (CoCl₂·6H₂O) were purchased from commercial suppliers (Sinopharm chemical reagent co., LTD, Adamas and Sigma-Aldrich) and used without further purification. CO₂ (99.999%), CO (99.999%), CH₄ (99.99%) were purchased from commercial supplier (Huaerwen). ¹³CO₂ (99% ¹³C atom) were purchased from Aldrich. All solvents of analytical grade were purchased from commercial suppliers and used without further purification. $g-C_3N_4$: $g-C_3N_4$ were synthesized according to previously reported procedures by heating approximately 5 g of melamine at a rate of 5 K min-1 to 823 K and then maintaining this temperature for another 2 h.

2. X-Ray diffraction pattern of *g*-C₃N₄

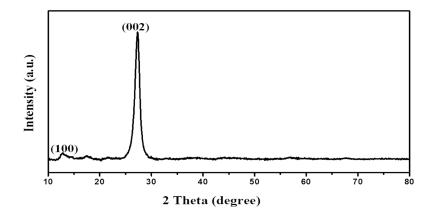


Figure S1. X-Ray diffraction spectrum of g-C₃N_{4.}

3. UV-vis diffuse reflectance spectrum of g-C₃N₄

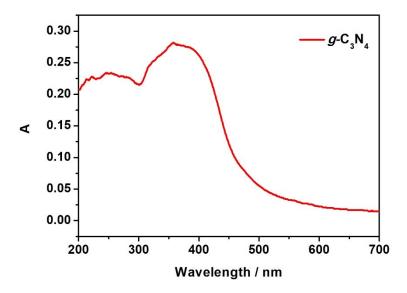


Figure S2. UV-vis diffuse reflectance spectrum of g-C₃N₄

4. UV-vis diffuse reflectance spectra of raw SiO_2 , NH_2 - SiO_2 and CoN_4 - SiO_2

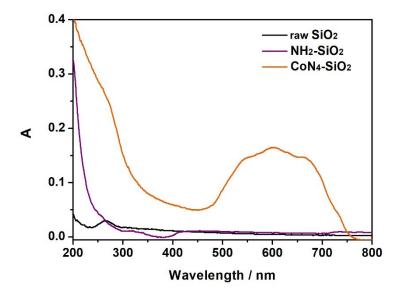


Figure S3. UV-vis diffuse reflectance spectra (DRS) of raw SiO_2 , NH_2 - SiO_2 , and CoN_4 - SiO_2

5. IR spectra

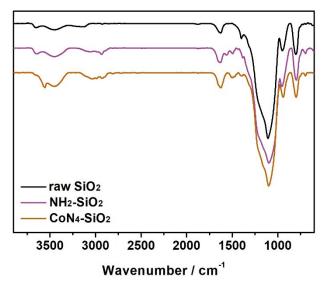
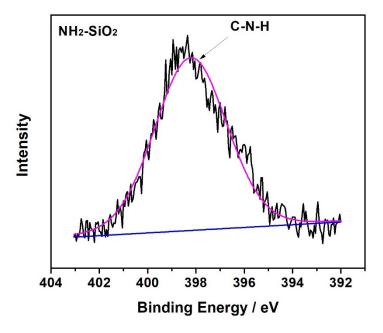



Figure S4. IR spectra of raw $\mathrm{SiO}_2,\,\mathrm{NH}_2\mathrm{-}\mathrm{SiO}_2,\,\mathrm{and}\;\mathrm{CoN_4}\mathrm{-}\mathrm{SiO}_2$

6. XPS spectra

Figure S5. XPS spectrum of N 1s of NH₂-SiO₂

7. Photocatalytic syngas production in CH₃CN

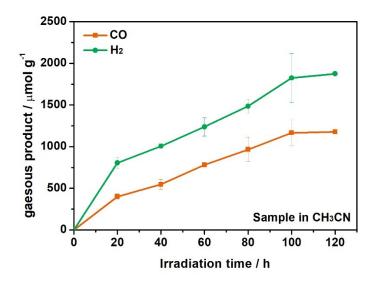
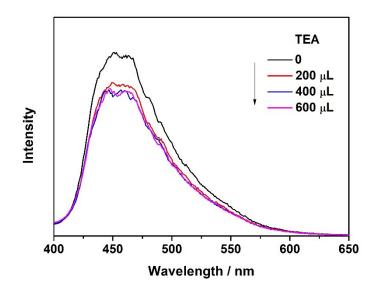



Figure S6. Long-time photocatalysis in CO₂-saturated CH₃CN; samples composition: CoN₄-SiO₂ (5.00 mg), *g*-C₃N₄ (10.00 mg), TEA (1.00 mL), total volume = 5.00 mL. The sample was irradiated under visible light (Blue LED, λ_{max} = 450 nm).

8. Emission spectra of g-C₃N₄ in the presence of TEA

Figure S7. Emission spectra of g-C₃N₄ in CH₃CN in the absence and presence of NH₂-SiO₂ (up) or TEA (bottom) (excitation wavelength = 380 nm).

9. Comparison of the reported heterogeneous photocatalytic syngas production systems

Table S1. Comparison of the reported heterogeneous photocatalytic syngas production systems

No.	Catalyst / Photocatalyst	Photosensitizer	n(CO)	<i>n</i> (H ₂)	CO/H ₂ ratio	<i>n/m</i> (CO)	<i>n/m</i> (H ₂)	Lifetime	Ref.
			[µmol]	[µmol]		[µmol•g ⁻¹]	[µmol•g-1]	[h]	
1[a]	CoN ₄ -SiO ₂	g-C ₃ N ₄	11.34	13.93	1.0 : 1.2	2267	2786	140	This work
2 ^[b]	CoN ₄ -SiO ₂	g-C ₃ N ₄	5.89	9.38	1.0 : 1.6	1178	1875	120	This work
4	ReP + CoP/Dye/TiO ₂	-	7.73	2.21	3.5 : 1.0	773	221	10	[c]
5	Rh(PD)Au@STO	-	138.45	26.03	5.3 : 1.0	1846	347	5	[d]

[a]. In CH₃CN/H₂O (v(H₂O) = 100 μ L, total volume = 5.00 mL)

[b]. In CH_3CN (total volume = 5.00 mL)

[c]. J.-S. Lee, D.-I. Won, W.-J. Jung, H.-J. Son, C. Pac, S. O. Kang, Angewandte Chemie-International Edition 2017, 56, 976-980.

[d]. D. Li, S. Ouyang, H. Xu, D. Lu, M. Zhao, X. Zhang, J. Ye, Chem. Commun. 2016, 52, 5989-5992.