Deep eutectic solvent route synthesis of zinc and copper vanadate *n*-type semiconductors – mapping oxygen vacancies and their effect on photovoltage

Sangki Hong, ¹ Rachel M. Doughty, ² Frank E. Osterloh, ² Julia V. Zaikina ¹

Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
Department of Chemistry, University of California at Davis, Davis, California 95616, United States

Supporting Information

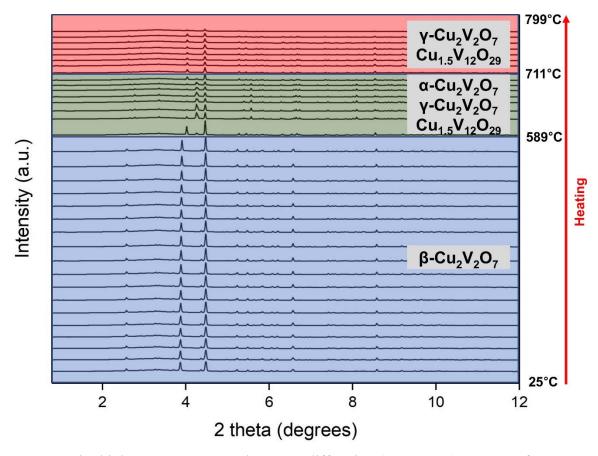


Figure S1. In-situ high-temperature powder X-ray diffraction (HT PXRD) patterns of β-Cu₂V₂O₇.

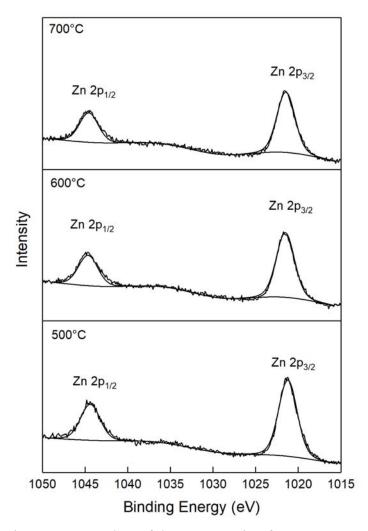


Figure S2. XPS data of the Zn 2p region for α -Zn₂V₂O₇.

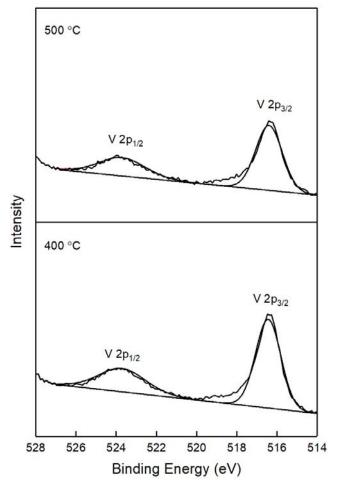


Figure S3. XPS data of the V 2p region for β -Cu₂V₂O₇.

Table S1. Estimated particle size of α -Zn₂V₂O₇ and β -Cu₂V₂O₇ calculated by Debye-Scherrer equation and atomic % ratio of V:Zn(Cu) by EDS.

$M_2V_2O_7$	Calcination Temperature (°C)	Particle size (nm)	V:Zn(Cu) ratio ^[a]
	500	50.5 ± 3.5	1.95(8): 2
α -Zn ₂ V ₂ O ₇	600	57.4 ± 4.4	1.93(4):2
	700	56.6 ± 6.0	1.94(7):2
0 C. V O	400	42.0 ± 7.9	1.92(6):2
β -Cu ₂ V ₂ O ₇	500	61.0 ± 3.5	1.95(3):2

[[]a] The average atomic % ratio from different spots was taken.