Supporting Information

High Lithium Ion Diffusion SiO₂@MoS₂ Core-Shell Nanocomposite Layers as Triple

Polysulfide Shield for High Performance Lithium-Sulfur Batteries

Jingyi Wu, Na You, Xiongwei Li, Honagxia Zeng, Shuai Li, Zhigang Xue, Yunsheng Ye*, Xiaolin Xie*

Li⁺ diffusion coefficient $\begin{pmatrix} D \\ Li^+ \end{pmatrix}$

After cycling at 0.1 C for 4 cycles for activation, the CV curves at the fourth scan were taken for conducting D_{Li^+} analysis. D_{Li^+} was examined by the Randles-Sevcik equation:

$$I_p = 2.69 \times 10^5 n^{3/2} A D_{Li}^{1/2} C_{Li}^{1/2} v^{1/2}$$

where I_p is the peak current, *n* is the number of electrons transferred in the reaction (*n*=2 for Li-S batteries), *A* is the electrode area, D_{Li}^{+} is the Li⁺ diffusion coefficient, C_{Li}^{+} is the Li⁺ concentration, and *v* refers to the scan rate. I_p was normalized by the capacity fade.

Li⁺ conductivity

To estimate the influence of the interlayer on the ionic conductivity, the functional materials was tape cast on the surface of Celgard separator with a coating thickness of $\sim 10 \,\mu\text{m}$. The ionic conductivity of the coated separator was measured by EIS method and calculated using the

equation $\sigma = \frac{L}{R_b S}$, where *L* and *S* are the thickness and area of the separator/or modified separator, respectively, and R_b is the bulk Ohmic resistance of the electrolyte.

Fig. S1 HRTEM image of the mesoporous SiO₂ nanospheres.

Fig. S2 N₂ adsorption-desorption isotherms of the mesoporous SiO₂ nanospheres.

Fig. S3 HRTEM image of the exfoliated MoS_2 .

Fig. S4 XRD patterns of $SiO_2@MoS_2$, MoS_2 nanoflakes and bulk MoS_2 .

Fig. S5 Folded-recovery test of the $SiO_2@MoS_2$ interlayer coated cathode, showing excellent adhesion.

Fig. S6 SEM and the corresponding elemental maps of the surface of the $SiO_2@MoS_2$ coated cathode.

Fig. S7 Visual examination of PS entrapment at different cycle times of Li-S batteries with (a) the $SiO_2@MoS_2$ interlayer coated cathode and (b) the sulfur cathode without an interlayer, both at current rate of 1 C.

Fig. S8 (a) XPS survey spectra of $SiO_2@MoS_2$. (b) S 2p, (c) Mo 3d and (d) O 1s XPS spectra of $SiO_2@MoS_2$ nanocomposites before and after PS adsorption.

Fig. S9 CV curves at various scan rates of the cells with (a) the SiO₂@MoS₂, (b) the mesoporous SiO₂, (c) the MoS₂ nanoflake interlayers and (d) without any interlayer. Plots of the CV peak current (I_p) versus the square root of the scan rate ($v^{1/2}$) at: (e) the cathodic peak at around 2.35 C (peak A), (f) the cathodic peak at around 2.05 V (peak B) and (g) the anodic peak (peak C).

Fig. S10 SEM images of the MoS₂ nanoflake interlayer (a) and the mesoporous SiO₂ interlayer (b).

Fig. S11 EIS curves of different interlayer coated separators and the corresponding ionic conductivities.

Fig. S12 Coulombic efficiencies of cells with different configurations during the rate performance.

Fig. S13 (a) Cycling performance at 1 C and (b) the corresponding charge-discharge profiles of MoS_2 naonsheets anode as a typical Li-S battery in a voltage window of 1.7-2.6 V vs Li⁺|Li. MoS₂ anode was prepared by mixing MoS₂ nanosheets and PVDF (weight ratio of 9:1) in NMP and then cast the slurry on Al foil..

Fig. S14 The sulfur utilization rate of different batteries at various rates.

Fig. S15 Galvanostatic charge-discharge profiles at various current rates of cells with (a) the mesoporous SiO_2 , (b) the MoS₂ nanoflake interlayers and (c) without any interlayer.

Fig. S16 Galvanostatic charge-discharge curves of the cell with the SiO₂@MoS₂ interlayer at 1

C.

Fig. S17 UV-Vis spectra and photographs (inset) of the cycled (a) separators and (b) cathodes in THF.

Fig. S18 Galvanostatic charge-discharge curves of cells with (a) the SiO₂@MoS₂ interlayer and (b) without any interlayer at a raised sulfur loading of 4.0 mg cm^{-2} .

Fig. S19 Rate performance at a sulfur loading of 4.0 mg cm⁻². Specific capacies are calculated based on the mass of sulfur (black), total mass of the cathode (blue) and the total mass of the cathode and the $SiO_2@MoS_2$ interlayer (red).

Fig. S20 TEM image of SiO₂@WS₂.

Sample	D _{Li} + at peak A	D _{Li} + at peak B	D _{Li⁺} at peak C		
	$(cm^2 s^{-1})$	(cm ² s ⁻¹)	(cm ² s ⁻¹)		
SiO ₂ @MoS ₂	1.30 x 10 ⁻⁸	3.56 x 10 ⁻⁸	7.04 x 10 ⁻⁸		
SiO ₂	1.29 x 10 ⁻⁸	3.54 x 10 ⁻⁸	6.85 x 10 ⁻⁸		
MoS_2	4.12 x 10 ⁻⁹	7.63 x 10 ⁻⁹	1.72 x 10 ⁻⁸		
Celgard	4.97 x 10 ⁻⁹	1.18 x 10 ⁻⁸	2.01 x 10 ⁻⁸		

Table S1 Li⁺ diffusion coefficients of cells with different configurations calculated from theRandles-Sevcik equation after adjusting for capacity fade.

Table S2. Summary of the impedance parameters of cells with different configurations.

Parameters	Celgard	MoS ₂	SiO ₂	SiO ₂ @MoS ₂
$R_{o}\left(\Omega ight)$	7.5	5.1	5.7	4.3
$R_{ m sf}\left(\Omega ight)$	101.5	25.7	40.5	7.0
$R_{\rm ct}\left(\Omega\right)$	60.3	33.5	11.1	3.1

Interlayer	Nanocomposite fabrication	Cathode	Rate	Cycle	Capacity decay	Year ^[ref]
	method		(C)	life	(%)	
SiO ₂ @MoS ₂	Self-assembly	Pure sulfur	2	2500	0.028	This
						work
MoS ₂ /rGO	Hydrothermal method	Pure sulfur	1	500	0.116	20181
MoS ₂ /CNT	Vacuum filtration	Pure sulfur	1	500	0.061	2018 ²
MoS ₂ /CNT	Layer-by-layer filtration	S/CNT	0.5	500	-	20173
		composites				
MoS_2	-	Pure sulfur	0.5	600	0.08	20174

Table S3 The electrochemical performance comparison of Li-S batteries with MoS_2 -relatedinterlayers in recent publications.

Interlayer	Interlayer	S loading	S content	S	Electrolyte	Capacity	Rate	Year ^{[Ref}
	thickness (µm)	(mg cm ⁻²)	(%)	content ^a (%)	volume (µL/mg S)	fading (% per cycle)	performance (mAh g ⁻¹)	1
SiO ₂ @MoS ₂	3	1.2,	60	43,	15	0.028	783 (3 C)	This
		4.0 (high S)		54		(2500 th)		work
Sb ₂ S ₃ /CNT	10	1.0	65	51	ca. 44 ^b	0.049	530 (2 C)	20185
						(1000 th)		
Laponite/CB	3.5	1.0-1.2	70	48	ca. 44 ^b	0.028	758 (2 C)	20186
						(500 th)		
MWCNT/NCQD	>20°	1.4,	60	56,	ca. 51 ^b	0.05	667 (3 C)	20187
		3.0 (high S)		58		(1000 th)		
Mesoporous SiO ₂	20	0.75	70	62	-	0.057	501 (1 C)	2018 ⁸
						(300 th)		
LiF/GO	-	1.3,	80	73,	-	0.043	524 (3 C)	20189
		2.6 (high S)		76		(400 th)		
Niobium Carbide	10	1.5,	60	44,	25	0.037	730 (5 C)	201810
		4.0 (high S)		53		(1500 th)		
Indium Nitride	6.5	1.5	80	69	20	0.015	415 (5 C)	201811
						(1000 th)		
MoP ₂ /CNT	>20°	1.2,	50	44,	-	0.025	360 (5 C)	201812
		2.8 (high S)		47		(500 th)		
MoS ₂ /rGO	8	1.8-2.0	70	64	ca. 23 ^{<i>b</i>}	0.116	615 (2 C)	20181
						(500 th)		
MoS ₂ /CNT	2	1.4	50	46	25	0.061	784 (10 C)	20182
						(500 th)		
MoS ₂ nanosheets	0.35	-	60	-	65 μL per	0.083	550 (1 C)	2017 ⁴
					cell	(600 th)		
CNT@TiO2	12	1.7,	60	48,	-	0.056	740 (2 C)	201713
		3 (high S)		53		(1000 th)		
Co/Co ₃ O ₄ /TiO ₂ /N	>20°	1.5	60	-	-	0.147	651 (1 C)	201714
-doped porous C						(100 th)		

 Table S4 Comparison of Li-S batteries using prisine sulfur cathodes and various interlayers in recent publications.

BN-carbon	13	2.1	60	-	-	0.09	702 (4 C)	201715
						(250 th)		
CNF@δ-MnO2	2	2.1, 4.1	80	-	ca. 23 ^b	0.13	554 (2 C)	201716
		(high S)				(200 th)		
V ₂ O ₅ /CNF	>20°	2.0	70	52	-	0.03	709 (5 C)	201717
						(1000 th)		
Graphene/chitosan	22.5	1.6-2.0	75	71	ca. 18 ^b	0.021	750 (2 C)	201718
						(3000 th)		
Acidized CNT	>20°	1.0	70	-	-	0.1 (400 th)	660 (2 C)	201719
CNT	>20°	1.0	70	-	-	0.66	466 (2.5 C)	2017 ²⁰
						(100 th)		
SRGO	10	1.3,	60	51,	-	0.15	471 (4 C)	2017 ²¹
		5 (high S)		59		(250 th)		
LTO/graphene	35	1.0-1.2	60	50	-	0.03	709 (2 C)	2016 ²²
						(500 th)		
GO	-	1.0-1.5	63	59	-	0.23	ca. 600 (2 C)	2015 ²³
						(100 th)		
Activated CNF	25	2.1-2.3	70	63	ca. 18 ^b	0.13	-	2015 ²⁴
						(200 th)		

^a S content including the weight of the interlayer. ^b calculated based on a cathode disk 12 mm in diameter. ^c free-standing

interlayers usually with thickness $>20~\mu\text{m}.$ "-" means data not available.

References

- L. Tan, X. Li, Z. Wang, H. Guo and J. Wang, *ACS Applied Materials & Interfaces*, 2018, 10, 3707-3713.
- L. Yan, N. Luo, W. Kong, S. Luo, H. Wu, K. Jiang, Q. Li, S. Fan, W. Duan and J. Wang, Journal of Power Sources, 2018, 389, 169-177.
- Y. C. Jeong, J. H. Kim, S. H. Kwon, J. Y. Oh, J. Park, Y. Jung, S. G. Lee, S. J. Yang and C. R. Park, *Journal of Materials Chemistry A*, 2017, 5, 23909-23918.
- Z. A. Ghazi, X. He, A. M. Khattak, N. A. Khan, B. Liang, A. Iqbal, J. Wang, H. Sin, L. Li and Z. Tang, *Advanced Materials*, 2017, 29, 1606817.

- S. Yao, J. Cui, J.-Q. Huang, Z. Lu, Y. Deng, W. G. Chong, J. Wu, M. Ihsan Ul Haq, F. Ciucci and J.-K. Kim, *Advanced Energy Materials*, 2018, 8, 1800710.
- 6. Y. Yang and J. Zhang, *Advanced Energy Materials*, 2018, **8**, 1801778.
- 7. Y. Pang, J. Wei, Y. Wang and Y. Xia, *Advanced Energy Materials*, 2018, 28, 1702288.
- 8. N. Zhang, B. Li, S. Li and S. Yang, *Advanced Energy Materials*, 2018, **8**, 1703124.
- X. Ni, T. Qian, X. Liu, N. Xu, J. Liu and C. Yan, *Advanced Functional Materials*, 2018, 28, 1706513.
- W. Cai, G. Li, K. Zhang, G. Xiao, C. Wang, K. Ye, Z. Chen, Y. Zhu and Y. Qian, Advanced Functional Materials, 2018, 28, 1704865.
- L. Zhang, X. Chen, F. Wan, Z. Niu, Y. Wang, Q. Zhang and J. Chen, *ACS Nano*, 2018, 12, 9578-9586.
- Y. Luo, N. Luo, W. Kong, H. Wu, K. Wang, S. Fan, W. Duan and J. Wang, *Small*, 2018, 14, 1702853
- L. Yang, G. Li, X. Jiang, T. Zhang, H. Lin and J. Y. Lee, *Journal of Materials Chemistry* A, 2017, 5, 12506-12512.
- C.-Y. Fan, S.-Y. Liu, H.-H. Li, Y.-H. Shi, H.-C. Wang, H.-F. Wang, H.-Z. Sun, X.-L.
 Wu and J.-P. Zhang, *Journal of Materials Chemistry A*, 2017, 5, 11255-11262.
- P. J. H. Kim, J. Seo, K. Fu, J. Choi, Z. Liu, J. Kwon, L. Hu and U. Paik, *NPG Asia Materials*, 2017, 9, 375.
- Y. Lai, P. Wang, F. Qin, M. Xu, J. Li, K. Zhang and Z. Zhang, *Energy Storage Materials*, 2017, 9, 179-187.
- M. Liu, Q. Li, X. Qin, G. Liang, W. Han, D. Zhou, Y. B. He, B. Li and F. Kang, *Small*, 2017, 13, 1602539.
- S. A. Abbas, J. Ding, S. H. Wu, J. Fang, K. M. Boopathi, A. Mohapatra, L. W. Lee, P. C.
 Wang, C. C. Chang and C. W. Chu, *ACS Nano*, 2017, **11**, 12436-12445.
- 19. G. Xu, A. Kushima, J. Yuan, H. Dou, W. Xue, X. Zhang, X. Yan and J. Li, Energy &

Environmental Science, 2017, 10, 2544-2551.

- 20. M. Li, W. Wahyudi, P. Kumar, F. Wu, X. Yang, H. Li, L. J. Li and J. Ming, ACS Applied Materials & Interfaces, 2017, 9, 8047-8054.
- Y. Lu, S. Gu, J. Guo, K. Rui, C. Chen, S. Zhang, J. Jin, J. Yang and Z. Wen, ACS Applied Materials & Interfaces, 2017, 9, 14878-14888.
- 22. Y. Zhao, M. Liu, W. Lv, Y.-B. He, C. Wang, Q. Yun, B. Li, F. Kang and Q.-H. Yang, *Nano Energy*, 2016, **30**, 1-8.
- J.-Q. Huang, T.-Z. Zhuang, Q. Zhang, H.-J. Peng, C.-M. Chen and F. Wei, ACS Nano, 2015, 9, 3002-3011.
- 24. S.-H. Chung, P. Han, R. Singhal, V. Kalra and A. Manthiram, *Advanced Energy Materials*, 2015, **5**, 1500738.