Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information for

Mo-doped Ni₂P Hollow Nanostructures: Highly Efficient and Durable Bifunctional Electrocatalysts for Alkaline Water Splitting

Fig. S2 XRD pattern of Ni-Mo hollow nanostructure.

Fig. S3 (a-b) TEM images of the Ni-Mo nanosheets without using the 0.2 M HCl solution as pH regulator after 12 h solvothermal reaction.

Fig. S4 TEM-EDS spectrum of the Ni-Mo hollow nanostructure.

Fig. S5 N_2 adsorption/desorption isotherms of Ni nanoprism precursor and Ni-Mo hollow nanoprism. Inset: pore size distribution of Ni-Mo hollow nanostructure.

Fig. S6 XRD patterns of pristine Ni_2P and different mass ratios of Mo-doped Ni_2P hollow nanostructure.

Fig. S8 N_2 adsorption/desorption isotherms of pristine Ni_2P and Mo-doped Ni_2P hollow nanostructures. Inset: pore size distribution of Mo-doped Ni_2P hollow nanostructures.

Fig. S9 (a) Polarization curves and (b) Corresponding Tafel plots of the series of the different mass ratio of Mo-doped Ni_2P hollow nanostructures.

Fig. S10 Survey scan (a) and high-resolution XPS spectra of the Mo-doped Ni₂P hollow nanostructures: (b) Ni 2p, (c) P 2p and (d) Mo 3d after 10 HER stability test.

Fig. S11 Voltammograms of the (a) pristine Ni_2P and (b) Mo-doped Ni_2P hollow nanostructures at various scan rates (20-160 mV s⁻¹) during the HER process in alkaline electrolyte.

Fig. S12 TOFs of the Mo-doped Ni_2P hollow nanostructures, pristine Ni_2P , Ni-Mo precursor and Ni precursor during the HER process.

Fig. S13 Top and side views of the pristine Ni₂P (111) and Mo-doped Ni₂P (111) with four types

of relatively stable sites.

Fig. S14 Free-energy diagram for HER on pristine Ni₂P (111) and Mo-doped Ni₂P (111).

Fig. S15 (a) SEM, (b) TEM and (c) HRTEM images of Mo-doped Ni₂P hollow nanostructures after 10 h OER stability test. Survey scan (d) and high-resolution XPS spectra of the Mo-doped Ni₂P hollow nanostructures after 10h OER stability test: (e) Ni 2p, (f) P 2p and (g) Mo 3d.

Fig. S16 Voltammograms of the (a) pristine Ni_2P and (b) Mo-doped Ni_2P hollow nanostructures at various scan rates (20-160 mV s⁻¹) during the OER process in alkaline electrolyte.

Fig. S17 TOFs of the Mo-doped Ni_2P hollow nanostructure, pristine Ni_2P , Ni-Mo precursor and Ni precursor during the OER process.

	Ni nanoprism precursor (mg)	(NH₄)₂MoO₄ (mg)
5.0 % Mo source Ni-Mo hollow nanostructure	57	3
8.3 % Mo source Ni-Mo hollow nanostructure	55	5
11.7 % Mo source Ni-Mo hollow nanostructure	53	7
16.7 % Mo source Ni-Mo hollow nanostructure	50	10

Table S1 The detailed additive amount of $(NH_4)_2MoO_4$ for the preparation of Ni-Mo hollow nanostructure electrocatalysts.

Catalyst	Overpotential (mV)	Tafel slope (mV dec ⁻¹)	Electrolyte and loading amount	Reference and current collector
Mo-doped Ni ₂ P HNs	81 (HER) (10 mA cm ⁻²)	53.4 (HER)	1.0 M KOH (0.34 mg cm ⁻²)	Our work
	270 (OER) (20 mA cm ⁻²)	68.5 (OER)	1.0 M KOH	(glassy carbon)
Mn-doped Ni ₂ P nanosheet array	103 (HER) (20 mA cm ⁻²)	98 (HER)	1.0 M KOH (7.0 mg cm ⁻²)	Chem. Commun. 2017, 53, 11048
	(OER activity was not reported)			(Ni foam)
Mo-doped Ni ₂ P nanowire array	78 (HER) (10 mA cm ⁻²)	82 (HER)	1.0 M KOH (1.13 mg cm ⁻²)	Nanoscale 2017, 9 , 16674 (Ni foam)
	(0	(initiality		
Mn-doped CoP nanosheet array	76 (HER) (10 mA cm ⁻²)	52 (HER)	1.0 M KOH (5.61 mg cm ⁻²)	ACS Catal. 2017, 7, 98 (Ti mesh)
_	(OER activity was not reported)			-
Ni-Fe-P porous nanorods	79 (HER) (10 mA cm ⁻²)	101.2 (HER)	1.0 M KOH Not report loading amount	J. Mater. Chem. A 2017, 5, 2496 (Ni foam)
	256 (OER) (10 mA cm ⁻²)	72.6 (OER)	1.0 M KOH	
NiCoP nanonest	62 (HER) (10 mA cm ⁻²)	68.2 (HER)	1.0 M KOH (2 mg cm ⁻²)	ACS Catal. 2017, 7, 4131 (carbon cloth)
	281 (OER) (10 mA cm ⁻²)	76.5 (OER)	1.0 M KOH	
Ni-Cu-P film	120 (HER) (10 mA cm ⁻²)	69 (HER)	1.0 M KOH (21 mg cm ⁻²)	ACS Appl. Mater. Interfaces 2018, 10,
	(OER activity was not reported)			(Ni sheet)
Fe-Ni-P nanosheets	106 (HER) (10 mA cm ⁻²)	89.7 (HER)	1.0 M KOH (5 mg cm ⁻²)	ACS Appl. Mater. Interfaces 2017, 9, 26001
	270 (OER) (20 mA cm ⁻²)	96 (OER)	1.0 M KOH	(Ni foam)
CeO ₂ -modified Ni ₂ P nanosheet	131 (HER) (10 mA cm ⁻²)	87 (HER)	1.0 M KOH (1.58 mg cm ⁻²)	Inorg. Chem. 2018, 57 , 584 (Ti mesh)
	(O)	(TI MOSH)		
Ni ₂ P Hollow microsphere	214 (HER) (10 mA cm ⁻²)	125.4 (HER)	1.0 M KOH (0.283 mg cm ⁻²)	Chem. Mater. 2017, 29 , 8539 (rotation disk electrode)
	359 (OER) (10 mA cm ⁻²)	71.7 (OER)	1.0 M KOH	(rotation disk electrode)
Fe-doped Ni ₂ P nanoarray	214 (HER) (50 mA cm ⁻²)	No Tafel slope	1.0 M KOH (1.5 mg cm ⁻²)	Adv. Funct. Mater. 2017, 27 , 1702513
				(Ni foam)
	230 (OER) (50 mA cm ⁻²)	55.9 (OER)	1.0 M KOH	

Table S2 Summary of the HER and OER performance using metal-doped transition metal phosphide nanostructures as electrocatalysts.