Supporting Information

Surface Reorganization Engineering on N Dopants MoS₂ by In-situ

Electrochemically Oxidation Activated for Efficient Oxygen Evolution

Reaction

Yuanzhe Wang ${}^{\$},$ ShanShan Llu ${}^{\$},$ Xianfeng Hao ${}^{\$},$ Sunrui Luan , HuanHuan

You, Junshuang Zhou, Dandan Song, Dong Wang, Hou,Li, Faming Gao* Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China. § Author Contributions

Y.W., S.L., and X.H. contributed equally to this work.

*Corresponding author.E-mail: fmgao@ysu.edu.cn.

Fig. S1 The SEM of N0-MoS₂

Fig. S2 The SEM of N1-MoS₂

Fig. S3 The SEM of N2-MoS₂

Fig. S4 The XPS spectra of N 1s orbitals for N0-MoS₂,N1-MoS₂,N2-MoS₂ and N3-MoS₂

Catalyst	Mo (Atomic%)	S (Atomic%)	N (Atomic%)	O (Atomic%)
N0-MoS2	28.5	70.76	0.65	0.09
N1-MoS2	28.21	70.03	1.68	0.08
N2-MoS2	27.96	69.12	2.85	0.07
N3-MoS2	27.6	69.06	3.26	0.08

Table S1 The concentration of elements in four samples before ECT

Fig. S6 Polarization curves of N0-MoS $_2,$ N1-MoS $_2,$ N3-MoS $_2$ and N4-MoS $_2$

Catalyst		S (Atomic%)	N (Atomic%)	O (Atomic%)
	Mo (Atomic%			
)			
Before-ECT-MoS ₂	27.6	69.06	3.26	0.08
MoOx@N3-doped MoS _{2-x}	26.86	68.18	3.12	1.84

Table S2 The concentration of elements in MoOx@N3-doped MoS2-x and Before-ECT-MoS2

Fig. S7 The corresponding energy-dispersive X-ray spectroscopy (EDX) mapping MoOx@N3-doped MoS_{2-x}.

Fig. S8 The XPS spectra of O orbitals for Before ECT-N3-MoS₂ and MoOx@N3-doped MoS_{2-x}

Fig. S9 N_2 sorption isotherms of Before ECT-N3-MoS_2 and MoOx@N3-doped $$MoS_{2-x}$$

Fig. S10 The polarization curves normalized by the BET surface area

Fig. S11 Nyquist plots of the as-prepared MoS₂ nanosheets

Fig. S12 The XPS spectra of Mo orbitals for Before ECT-N3-MoS₂, MoOx@N3-doped MoS_{2-x} and After durability test MoOx@N3-doped MoS_{2-x}

Fig. S13 The XPS spectra of O orbitals for Before ECT-N3-MoS₂, MoOx@N3doped MoS_{2-x} and After durability test MoOx@N3-doped MoS_{2-x}

Fig. S14 XRD patterns of Before ECT-N3-MoS_2 , MoOx@N3-doped MoS_2-x and After durability test MoOx@N3-doped MoS_2-x

Fig. S15 Raman spectra of Before ECT-N3-MoS_2 , MoOx@N3-doped MoS_2-x and After durability test MoOx@N3-doped MoS_2-x

Fig. S16 XRD patterns of MoOx/N3-MoS₂ and MoOx@N3-doped MoS_{2-x}

Fig. S17 Polarization curves of MoOx/N3-MoS₂ and MoOx@N3-doped MoS_{2-x} nanosheets

Fig.S18 Density of states (DOS) plots of as-prepared MoS₂ nanosheets.

Fig. S19 Bader charge of different atoms for pristine MoS2

Fig. S20 Bader charge of different atoms for N-MoS2

Fig.S21 the corresponding atomic configurations of the intermediate adsorption for pristine MoS2

Fig.S22 the corresponding atomic configurations of the intermediate adsorption for N-MoS2

Catalyst	Potential	Tafel slope	Electrolyte	Substrate	Reference
	@	(mV dec ⁻¹)			
	10.0mA				
	cm-1				
	(Vvs. RHE)				
Benchmarking	1.53	70	1 M KOH	Glassy carbon	This work
RuO2					
N3-MoS2-ECT	1.50	61	1 M KOH	Glassy carbon	This work
single-unit-cell	$\sim \! 1.6$	64	1 M KOH	Glassy carbon	[1]
thick CoSe2					
sheets					
NCNT/CoxMn ₁₋	1.57	40	1 M KOH	Glassy carbon	[2]
O _x					
Co3O4/N-	1.54	67	1 M KOH	Glassy carbon	[3]
rmGO					
A-CoS4.6O0.6	1.52	62	1 M KOH	Glassy carbon	[4]
PNCs					
N-CoFe LDHs	1.511	40.03	1 M KOH	Glassy carbon	[5]
Co@CoOx	1.519	68.9	1 M KOH	Glassy carbon	[6]
N-CoS2	1.47	98	1 M KOH	Glassy carbon	[7]
N-NiS2	1.5	none	1 M KOH	Glassy carbon	[8]
FeV	1.48	36.7	1 M KOH	Glassy carbon	[9]
FeCoMo	1.507	27.74	1 M KOH	Glassy carbon	[10]

Table S3. Comparison of the OER activity for several recently reported highly activenable metal-free catalysts supported on different substrates.

[1] Y. Liu, C. Xiao, M. Lyu, Y. Lin, W. Cai, P. Huang, W. Tong, Y. Zou, Y. Xie, *Angew. Chem. Int.. Ed.* 2015, 127, 11383-11387

[2] X. Liu, M. Park, M. G. Kim, S. Gupta, X. Wang, G. Wu, J. Cho, Nano Energy 2016, 20, 315-325

[3] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780-786

[4] Pingwei Cai, Junheng Huang, Junxiang Chen, and Zhenhai Wen Angew. Chem. Int. Ed. 2017, 56, 4858 - 4861

[5] Yanyong Wang, Chao Xie, Zhiyuan Zhang, Dongdong Liu, Ru Chen, and Shuangyin WangAdv. Funct. Mater. 2017, 1703363

[6] Jing Qi, Wei Zhangand Rui Cao Aligned Cobalt-Based Co@CoOx Nanostructures for Efficient Electrocatalytic

Water Oxidation DOI:10.1039/C7CC04609J

[7]Jinhui Hao, Wenshu Yang, Zhen Peng, Chi Zhang, Zhipeng Huang, and Weidong Shi A Nitrogen Doping Method for CoS2 Electrocatalysts with Enhanced Water Oxidation Performance

[8] Jinhui Hao, Wenshu Yang, Jianwen Hou, Baodong Mao, Zhipeng Huang, and Weidong Shi Nitrogen Doped NiS2Nanoarray with Enhanced Electrocatalytic Activity for Water Oxidation 10.1039/C7TA03663A

[9]Ke Fan, Yongfei Ji, Haiyuan Zou, Jinfeng Zhang, Bicheng Zhu, Hong Chen, Quentin Daniel, Yi Luo, Jiaguo Yu,* and Licheng Sun Angew. Chem. Int. Ed. 2017, 56, 1 - 6

[10]Peng Fei Liu,Shuang Yang,Li Rong Zheng,Bo Zhangand Hua Gui Yang Mo6+ activated multimetal oxygenevolving catalyst DOI: 10.1039/C6SC04819F

[11] J.S.Wang, J.Liu, B.Zhang, F.Cheng, Y.J. Ruan, X.Ji, K.Xu, C.Chen, L.Miao, J.J. Jiang, Nano Energy, 2018, 53, 141-

[12] J. Luo, H.Y. Wang, G. Su, Y.L. Tang, H. Q. Liu, F. Y. Tian, D.L. Li, J. Mater. Chem. A, 2017,5, 14865-14872