Chainmail Co-catalyst of NiO shell-encapsulated Ni for Improving Photocatalytic CO₂ Reduction over g-C₃N₄

Chunqiu Han,^a Rumeng Zhang,^a Yinghao Ye,^c Li Wang,^a Zhaoyu Ma,^a Fengyun Su,^a Haiquan Xie,^a Ying Zhou,^c Po Keung Wong,^d Liqun Ye,^{ab}*

a. Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China.

b. College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.

c. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Materials Science and Engineering, Southwest Petroleum University, Chengdu, 610500, P. R. China.

d. School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, P. R. China.

Corresponding Author

* Prof. Liqun Ye

E-mail: <u>yeliquny@163.com</u>

Experimental Section

Materials

Thiourea (ACS, \geq 99.0%) and nickel nitrate hexahydrate (AR, 98%) were purchased from Aladdin and used without further purification. NaHCO₃ and triethanolamine were purchased from Sinopharm Chemical Reagent Co., Ltd.

Synthesis

g-C₃N₄: Thiourea (20 g) was heated to 500 °C for 3 h in air, applying a heating rate of 5 °C min⁻¹. The resultant yellow bulk was milled into g-C₃N₄ powder.

Ni/NiO/g-C₃N₄: This system was prepared from a solution containing g-C₃N₄ powder (180 mg), nickel nitrate hexahydrate solution (3 g L⁻¹), triethanolamine (10 mL), and distilled water with a total volume of 100 mL. Then, this system was vacuumed by irradiation using a xenon lamp (PLS SXE300, Beijing Perfect Light Technology Co., Ltd., Beijing, China) for 3 h. The Ni core was synthesized by photocatalytic reduction of Ni²⁺. Then, the suspension in the system was centrifuged, washed three times with absolute ethanol to obtain NiO shell by atmospheric oxidation, and dried under vacuum at 60 °C. The dried Ni/NiO/g-C₃N₄ powder was stored under an argon atmosphere.

Characterization

The crystalline phase of the samples was characterized by X-ray diffraction (XRD) using a Bruker D8 Advance X-ray diffractometer at room temperature with Cu–Kα radiation. Diffraction patterns were recorded in the range of 5–80°. X-ray photoelectron spectroscopy (XPS) was carried out using a Thermo ESCALAB 250XI X-ray photoelectron spectrometer (Al Kα, 150 W, C1 s 284.8 eV). UV–Vis diffuse reflectance spectroscopy (DRS) was performed using a UV–Vis spectrometer (Perkin Elmer, Lambda 850, BaSO₄ reference) in a wavelength range of 190–800 nm. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (excitation wavelength, 310 nm) was recorded on a JEOL JEM–2100F (URH) Field Emission wavelength, 310 nm) was recorded on a FLS980 Multifunction Steady-State and Transient-State Fluorescence Spectrometer (Edinburgh Instruments) at room

temperature. Brunauer–Emmett–Teller (BET) surface areas were measured using a Quantachrome Autosorb-iQ automated gas sorption system at 77 °K. Transient surface photovoltage data were recorded on a 500 MHz digital oscilloscope (TDS 3054C, Tektronix; Beaverton, OR, USA). The powder samples were placed on an indium-tin-oxide (ITO) electrode, and another ITO electrode was used to press the sample into a thin film. A laser pulse (λ = 355 nm; pulse width: 4 ns) using the third-harmonic generation of a Nd:YAG laser (Quantel Brilliant Eazy: BRILEZ/IR-10) was employed as the light source. Steady-state surface photovoltage and transient photovoltage were massured by self-assembled surface photovoltaic testing equipment (SPV) based on lock-in amplifier including xenon lamp light source (CHF-XM500 W), phase-locked amplifier (SR830-DSP), monochromator (Omni-5007), modulation fan (SR540), sample cell and computer.

Photocatalytic reduction of CO₂

Ni/NiO/g-C₃N₄ or g-C₃N₄ photocatalyst (0.05 g) were uniformly dispersed on a glass plate with an area of 26 cm². Then, the glass plate was transferred into a quartz reactor with a volume of 350 mL with 5 mL water and 1atm Ar gas. 1 mL high-purity CO₂ gas (99.99%) was injected into the quartz reactor. Subsequently, the reactor was irradiated using a xenon lamp (PLS SXE300, Beijing Perfect Light Technology Co., Ltd., Beijing, China). At regular time intervals, 1 mL of gas was extracted from the reactor with a syringe, and the gas composition was analyzed by gas chromatography (GC 9790II, Zhejiang Fuli Analytical Instrument Co., Ltd., China) with a flame ionization detector (FID, TDX–01 columns) and a thermal conductivity detector (TCD, 5A columns). Selectivity = CO/(CO + CH₄). The production yield was quantified using a calibration curve. The outlet gases were determined to be mainly CO, CH₄, and small quantities of O₂ and H₂. ¹³CO was detected by Hiden HPR20 on-line gas mass spectra analysis system.

Photoelectrochemical measurements

Photoelectrochemical measurements of the catalysts were measured on an electrochemical workstation (CHI 660e) in a three-electrode (counterpart electrode: Pt, reference electrode: Ag/AgCl) quartz reactor. 0.5 M Na₂SO₄ solution, a mixed

S-3

solution of 0.1 M K₃[Fe(CN)₆] and K₄[Fe(CN)₆]·3H₂O are used as the electrolyte solutions for photocurrent and LSV, and electrochemical impedance, respectively. Working electrodes for g-C₃N₄ and Ni/NiO/g-C₃N₄ were prepared applying the doctor-blading method. Then, 0.01 g ethyl cellulose was dissolved in about 15 mL ethanol with 0.1 g catalyst. Subsequently, a glass stick was applied to FTO with a layer of high-temperature adhesive tape on the edge, followed by drying in air and activation at 120 °C for 2 h.

In-situ Fourier transform infrared spectrometer (FT–IR) analysis

In-situ Fourier transform infrared spectrometry was performed on a Nicolet IS–50 instrument. The sample was filled into an in-situ IR cell, and CO₂ and H₂O vapors were introduced into the cell and fiber source (FX300, Beijing Perfect Light Technology Co., Ltd., Beijing, China) through the CaF₂ window of the cell. Before the measurement, the samples were degassed at 423 °K for 4 h. The baseline was obtained before the sample reached CO₂ adsorption equilibrium within 1 h.

Computational details

DFT calculation

DFT calculations were performed using DMol³ code based on Materials Studio software. The electron exchange and correlation were approximated by generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functional. Dispersion corrected DFT (DFT-D) by Grimme was used to describe the van der Waals interaction between the gas molecules and the g-C₃N₄ surface (001), which has been successfully applied to simulate the surface and reaction properties for various catalysts. The valence electron configurations were 1s¹ for H, 2s²2p² for C, 2s²2p³ for N, 2s²2p⁴ for O and 3d⁸4s² for Ni, respectively. The Monkhorst-Pack grid of 2×2×1 k-point was used for Brillouin-zone. For convergence threshold, the total energy of the system, maxforce, and displacement tolerances were set to be 1×10⁻⁵ Ha, 0.002 Ha/Å and 0.005 Å, respectively. In order to avoid interaction of two slab a vacuum space of 20 Å was built. All electrons core treatment was included in calculations and all the precision was setting as fine.

Figure S1. Elemental mapping of Ni (green) and O (red).

Figure S2. ¹³CO was detected by Hiden HPR20 on-line gas mass spectra analysis

system.

Figure S3. Photocatalytic stability experiments of Ni/NiO/g-C₃N₄ for photocatalytic

CO₂ reduction.

Figure S4. Model of Ni-g-C $_3N_4$ for DFT calculation.

		CO generation	
Photocatalysts	light source	rate	Ref.
		µmol g⁻¹ h⁻¹	
g-C ₃ N ₄ /NiAl-LDH	300 W xenon lamp, λ > 420 nm	2.84	S1
Mg/g-C ₃ N ₄	300 W xenon lamp	2.85	S2
Cu/g-C ₃ N ₄	350 W xenon lamp	9.89	S3
(-CN)/g-C ₃ N ₄	300 W xenon lamp,	0.39	S4
	λ > 420 nm		
$c-Cu_2O_gC_3N_4$	LED lamp (8 W)	0.002	S5
Au/g-C ₃ N ₄	300 W xenon lamp	6.59	S6
NiO/g-C ₃ N ₄	300 W xenon lamp	4.17	S7
g-C ₃ N ₄		1.52	This
Ni/NiO/g-C ₃ N ₄	300 W xenon lamp	13.96	work

Table S1 Comparison of g-C₃N₄-based photocatalysts for CO₂ conversion.

[S1] S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, g-C₃N₄/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO₂ into Renewable Fuels, ACS Appl. Mater. Interfaces, 2018, 10, 2667-2678.

[S2] J. Tang, W. Zhou, R. Guo, C. Huang, W. Pan, Enhancement of photocatalytic performance in CO_2 reduction over Mg/g-C₃N₄ catalysts under visible light irradiation, Catal. Commun., 2018, 107, 92-95.

[S3] C. Hu, J. Zhou, C. Sun, M. Chen, X. Wang, Z. Su, HKUST-1 Derived Hollow C-Cu_{2-x}S Nanotube/g-C₃N₄ Composites for Visible-Light CO₂ Photoreduction with H₂O Vapor, Chem. Eur. J., 2019, 25, 379– 385.

[S4] X. Liu, P. Wang, H. Zhai, Q. Zhang, B. Huang, Z. Wang, Y. Liu, Y. Dai, X. Qin, X. Zhang, Synthesis of synergetic phosphorus and cyano groups (CN) modified $g-C_3N_4$ for enhanced photocatalytic H₂ production and CO₂ reduction under visible light irradiation, Appl. Catal. B: Environ., 2018, 232, 521-530.

[S5] P. Chang, I-H. Tseng, Photocatalytic conversion of gas phase carbon dioxide by graphitic carbon nitride decorated with cuprous oxide with various morphologies, J CO_2 Util., 2018, 26, 511–521.

[S6] H. Li, Y. Gao, Z. Xiong, C. Liao, K. Shih, Enhanced selective photocatalytic reduction of CO_2 to CH_4 over plasmonic Au modified g- C_3N_4 photocatalyst under UV– vis light irradiation, Appl. Surf. Sci., 2018, 439, 552-559.

[S7] J. Tang, R. Guo, W. Zhou, C. Huang, W. Pan, Ball-flower like NiO/g-C₃N₄ heterojunction for efficient visible light photocatalytic CO₂ reduction, Appl. Catal. B-Environ., 2018, 237, 802-810.