## **Supporting Information**

## Cascade Charge Transfer Mediated by *In-situ* Interface Modulation Toward Solar Hydrogen Production

Yu-Bing Li,<sup>a</sup> Tao Li,<sup>a</sup> Xiao-Cheng Dai,<sup>a</sup> Ming-Hui Huang,<sup>a</sup> Yunhui He,<sup>b</sup> Guangcan Xiao,<sup>b</sup> Fang-

Xing Xiao<sup>a</sup>\*

a. College of Materials Science and Engineering, Fuzhou University, New Campus,

Minhou, Fujian Province 350108, China.

 Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou, 350002, People's Republic of China.

E-mail: fxxiao@fzu.edu.cn

## Table of contents

| Figure S1. Zeta potentials of APTMS-CdS@CdSe (25 °C)S1                                                                |
|-----------------------------------------------------------------------------------------------------------------------|
| Figure S2. Zeta potentials of MoS <sub>2</sub> QDsS1                                                                  |
| Figure S3. Zeta potentials of APTMS-CdS                                                                               |
| Figure S4. TEM image of MoS <sub>2</sub> QDs and size distribution histogramS2                                        |
| Figure S5. UV-vis absorption spectrum of MoS <sub>2</sub> QDsS3                                                       |
| Figure S6. Raman spectra of pristine CdS and CdS@CdSe (25 °C)S3                                                       |
| Figure S7. Photocatalytic H <sub>2</sub> evolution rate of CdS                                                        |
| Figure S8. Sample colors of CdS@CdSe (25, 50,90 °C)                                                                   |
| Figure S9. Photocatalytic H <sub>2</sub> evolution performances of CdS-X mL MoS <sub>2</sub> QDsS7                    |
| Figure S10. Photocatalytic H <sub>2</sub> evolution performances of CdS@CdSe-6M (25 °C) (different light intensity)S7 |
| Figure S11. Apparent Quantum yield (A.Q.Y) of CdS@CdSe-6M (25 °C)                                                     |
| Figure S12. XRD and FTIR of CdS@CdSe-6M (25 °C) before and after cyclic reactionS10                                   |
| Figure S13. Charge carrier density (N <sub>D</sub> ) of three samples                                                 |
| <b>Table S1.</b> Peak positions with corresponding functional groups of three samples                                 |
| Table S2. Summary of specific surface area, pore volume and pore size of three samples                                |
| Table S3. Chemical bond species vs. B.E. for three samples                                                            |
| Table S4. Apparent Quantum yield (A.Q.Y) of CdS@CdSe-6M (25 °C)                                                       |
| Table S5. Solar-to-hydrogen conversion efficiency (S.T.H) of CdS@CdSe-6M (25 °C)                                      |
| References                                                                                                            |
| Note: The three samples are referred to pristine CdS NWs, CdS@CdSe (25 °C) and CdS@CdSe-6M                            |
| (25 °C), respectively.                                                                                                |



Fig. S1. Zeta potentials of APTMS modified-CdS@CdSe (25 °C) as a function of pH value.



Fig. S2. Zeta potentials of MoS<sub>2</sub> QDs as a function of pH value.



Fig. S3. Zeta potentials of APTMS modified CdS NWs as a function of pH value.



Fig. S4. TEM image of MoS<sub>2</sub> QDs with corresponding size distribution histogram in the inset.



**Fig. S5.** UV-vis absorption spectrum of MoS<sub>2</sub> QD aqueous solution with corresponding photograph and band-gap energy in the insets.



Fig. S6. (a) Raman spectra of pristine CdS NWs and CdS@CdSe (25 °C) with (b) magnified view.

| Peak position (cm <sup>-1</sup> ) | Vibration mode                                 |  |
|-----------------------------------|------------------------------------------------|--|
| 3420                              | N-H stretching vibration                       |  |
| 2925                              | C-H stretching vibration                       |  |
| 1635                              | N-H deformation vibration                      |  |
| 1465                              | CH <sub>2</sub> deformation vibration          |  |
| 1377                              | CH <sub>3</sub> deformation vibration          |  |
| 1055                              | Si-O <sup>S1</sup> , C-N stretching vibrations |  |

**Table. S1** Peak position with corresponding functional groups.

**Table. S2** Summary of the specific surface area, pore volume and pore size of blank CdS NWs,CdS@CdSe (25 °C) and CdS@CdSe-6M (25 °C).

| Samples     | $S_{BET}$ $(m^2 g^{-1})^a$ | Total pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) <sup>b</sup> | Average pore size<br>(nm) <sup>c</sup> |
|-------------|----------------------------|----------------------------------------------------------------------|----------------------------------------|
| CdS NWs     | 6.99                       | 0.031                                                                | 17.68                                  |
| CdS@CdSe    | 15.01                      | 0.027                                                                | 7.42                                   |
| CdS@CdSe-6M | 16.26                      | 0.030                                                                | 7.35                                   |

<sup>a</sup> BET surface area is calculated from the linear part of the BET plot.

<sup>b</sup> Single point total pore volume of the pores at  $P/P_0 = 0.99$ .

<sup>c</sup> Adsorption average pore width (4V/A by BET).

| Element              | CdS    | CdS@CdSe (25 °C) | CdS@CdSe-6M (25 °C) | Chemical Bond Species |
|----------------------|--------|------------------|---------------------|-----------------------|
| C 1s A               | 284.60 | 284.60           | 284.60              | С-С/С-Н               |
| Cd 3d5/2             | 404.15 | 404.95           | 404.80              | $Cd^{2+S2}$           |
| Cd 3d <sub>3/2</sub> | 410.90 | 411.75           | 411.50              | $\mathrm{Cd}^{2+}$    |
| S 2p <sub>3/2</sub>  | 160.55 | 161.33           | 161.10              | S <sup>2- S3</sup>    |
| S 2p1/2              | 161.70 | 162.75           | 162.35              | S <sup>2-</sup>       |
| Se 3d                | N.D.   | N.D.             | 54.30               | Se <sup>2-S4</sup>    |
| Mo 3d5/2             | N.D.   | N.D.             | 228.07              | Mo <sup>4+ S5</sup>   |
| Mo 3d <sub>3/2</sub> | N.D.   | N.D.             | 232.06              | Mo <sup>4+</sup>      |

Table. S3 Chemical bond species vs. B.E. for different samples.

N.D.: Not Detected.



Fig. S7. Photocatalytic H<sub>2</sub> evolution rate of pristine CdS NWs under visible light irradiation ( $\lambda$ >420 nm).



CdS@CdSe (25 °C) CdS@CdSe (50 °C) CdS@CdSe (90 °C)

**Fig. S8.** Sample color of CdS@CdSe prepared at different temperature (25, 50, 90 °C) for triggering *in-situ* phase self-transformation.



**Fig. S9.** Photocatalytic H<sub>2</sub> evolution performances of blank CdS NWs and CdS-X MoS<sub>2</sub> (X=0, 0.5, 1, 2, 4, 6, 8 mL) nanocomposites with different adding volumes of MoS<sub>2</sub> QDs under visible light irradiation ( $\lambda$ >420 nm).



**Fig. S10.** Photocatalytic H<sub>2</sub> evolution rates of CdS@CdSe-6M (25 °C) under visible light irradiation ( $\lambda$ >420 nm) with different light intensity (144, 198, 252, 306 mW/cm<sup>2</sup>).

**Note: Fig. S10** demonstrates that hydrogen production rate increases when the light irradiation intensity gradually boosts, suggesting hydrogen production reaction occurring over CdS@CdSe-6M (25 °C) is indeed caused by a photocatalytic process.



Fig. S11. Apparent Quantum yield (A.Q.Y) of CdS@CdSe-6M (25 °C) under different monochromatic wavelengths.

| Photocatalyst       | Light source | Activity (µmol·h <sup>-1</sup> ) | AQY (%) |
|---------------------|--------------|----------------------------------|---------|
| CdS@CdSe-6M (25 °C) | 400nm        | 9.70                             | 2.7     |
|                     | 420nm        | 12.9                             | 3.5     |
|                     | 450nm        | 20.7                             | 4.4     |
|                     | 500nm        | 17.2                             | 3.3     |
|                     | 550nm        | 0                                | 0       |
|                     | 600nm        | 0                                | 0       |
|                     | 650nm        | 0                                | 0       |
|                     | 700nm        | 0                                | 0       |
| CdS                 | 450nm        | 3.49                             | 0.74    |

Table. S4 A.Q.Y of CdS@CdSe-6M (25 °C) and pristine CdS NWs at 450 nm.

| Photocatalyst       | Light source | Activity (mmol·g <sup>-1</sup> ·h <sup>-1</sup> ) | S.T.H (%) |
|---------------------|--------------|---------------------------------------------------|-----------|
| CdS@CdSe-6M (25 °C) | 400nm        | 0.97                                              | 26.4      |
|                     | 420nm        | 1.29                                              | 36.2      |
|                     | 450nm        | 2.07                                              | 48.7      |
|                     | 500nm        | 1.72                                              | 40.4      |
|                     | 550nm        | 0                                                 | 0         |
|                     | 600nm        | 0                                                 | 0         |
|                     | 650nm        | 0                                                 | 0         |
|                     | 700nm        | 0                                                 | 0         |
| CdS                 | 450nm        | 0.349                                             | 8.22      |

Table. S5 S.T.H. of CdS@CdSe-6M (25 °C) and pristine CdS NWs at 450 nm.



Fig. S12. XRD patterns (a) and FTIR spectra (b) of CdS@CdSe-6M (25 °C) before and after cyclic photocatalytic H<sub>2</sub> evolution reactions under visible light irradiation (16 h,  $\lambda$ >420 nm).



**Fig. S13.** Charge carrier density (N<sub>D</sub>) of blank CdS NWs, CdS@CdSe (25 °C) and CdS@CdSe-6M (25 °C).

## References

- S1. N. Sadati Behbahani, K. Rostamizadeh, M. R. Yaftian, A. Zamani and H. Ahmadi, *J. Environ. Health Sci. Eng.*, 2014, **12**, 103.
- S2. P. R. Nikam, P. K. Baviskar, J. V. Sali, K. V. Gurav, J. H. Kim and B. R. Sankapal, *J. Alloy. Compd.*, 2016, **689**, 394-400.
- S3. Z. Yan, X. Yu, A. Han, P. Xu and P. Du, J. Phys. Chem. C., 2014, 118, 22896-22903.
- S4. J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem., 1994, 98, 4109-4117.
- S5. C. Liu, L. Wang, Y. Tang, S. Luo, Y. Liu, S. Zhang, Y. Zeng and Y. Xu, *Appl. Catal. B-Environ.*, 2015, 164, 1-9.