Supporting Information

Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr₃ perovskite solar cells

Yu liu,^a Benlin He,*^a Jialong Duan,^a Yuanyuan Zhao,^a Yang Ding,^a Mixue Tang,^a Haiyan Chen^a and Qunwei Tang*^b

^a School of Materials Science and Engineering, Ocean University of China, Qingdao

266100, P.R. China

^b Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, P.R. China

* Corresponding Authors. E-mail: blhe@ouc.edu.cn, tangqunwei@jnu.edu.cn

Fig. S1. Chemical structures of (a) P3HT and (b) ZnPc.

Fig. S2. UPS of (a) and (b) P3HT, (d) and (e) P2Z1, (g) and (h) P1Z1, (j) and (k)

P1Z2, and (m) and (n) ZnPc. The curves of $(Ahv)^{1/2}$ as a function of hv for (c) P3HT, (f) P2Z1, (i) P1Z1, (l) P1Z2 and (o) ZnPc.

Fig. S3. Top-view SEM images of CsPbBr₃ after (a) 200 °C annealed, (b) CB treated, and (c) 200 °C annealed after CB treated.

Fig. S4. EDS of P1Z1 deposited on CsPbBr3 film.

Fig. S5. The XRD patterns of ZnPc, P3HT and P1Z1 powder.

Fig. S6. UV-vis absorption spectra of pristine CsPbBr₃, and CsPbBr₃ after 200 °C annealed, CB treated, and 200 °C annealed after CB treated.

Fig. S7. Photocurrent–voltage (J-V) curves under air mass 1.5 global (AM1.5G, 100 mW cm⁻²) for CsPbBr₃ PSCs based on P1Z1 HTM with different concentrations.

Fig. S8. Photocurrent–voltage (J-V) curves of device based on pristine CsPbBr₃, and CsPbBr₃ after 200 °C annealed, CB treated, and 200 °C annealed after CB treated.

Fig. S9. Photocurrent–voltage (J-V) curves of CsPbBr₃ PSCs with and without HTMs under forward and reverse scan directions.

Fig. S10. Statistical distribution of the photovoltaic parameters of CsPbBr₃ PSCs with and without HTMs. (a) Distribution of J_{sc} . (b) Distribution of V_{oc} . (c) Distribution of *FF* and (d) Distribution of PCE.

Fig. S11. IPCE spectra of HTM-free and P1Z1 HTM based CsPbBr₃ PSCs.

Fig. S12. Contact angle of 99.7°, 113.1°, 101.2°, 74.0° and 52.3° for P3HT, P2Z1, P1Z1, P1Z2 and ZnPc, respectively.

HTM	РЗНТ	P2Z1	P1Z1	P1Z2	ZnPc
LUMO (eV)	-3.01	-3.02	-3.03	-3.15	-3.17
HOMO (eV)	-5.13	-5.15	-5.16	-5.29	-5.33
$E_{g} (eV)$	2.12	2.13	2.13	2.14	2.16

 Table S1. The HOMO, LUMO energy levels and bandgaps of different HTMs.

HTMs	HTM-free	P3HT	P2Z1	P1Z1	P1Z2	ZnPc
τ_1 (ns)	0.32	0.18	0.07	0.05	0.08	0.15
$f_1(\%)$	43.60	62.20	83.72	88.84	88.07	39.54
$\tau_2(ns)$	2.04	1.3913	0.97	0.89	1.37	1.74
$f_2(\%)$	56.40	37.80	16.28	11.16	11.93	60.46
$\tau_{ave}(ns)$	0.60	0.27	0.07	0.06	0.09	0.34

Table S2. TRPL decay parameters of excitonic transitions for CsPbBr₃ PSCs with and without HTMs..

 τ_{ave} (ns) = $(f_1\tau_1^2 + f_2\tau_2^2)/(f_1\tau_1 + f_2\tau_2)$

P1Z1 HTM	$J_{\rm sc}$ (mA cm ⁻²)	$V_{\rm oc}$ (V)	FF (%)	PCE (%)
3 mg mL^{-1}	6.62	1.511	82.07	8.21
5 mg mL^{-1}	7.652	1.578	83.06	10.03
7 mg mL ⁻¹	6.67	1.497	81.12	8.57
9 mg mL^{-1}	6.37	1.46	81.29	7.56

Table S3. Photovoltaic parameters of CsPbBr₃ PSCs based on P1Z1 HTM with different concentrations.

CsPbBr ₃	$J_{\rm sc}({\rm mAcm^{-2}})$	$V_{\rm oc}$ (V)	FF (%)	PCE (%)
Pristine	6.15	1.390	71.59	6.12
200 °C	6.2	1.378	72.05	6.16
CB treated	6.12	1.376	69.77	5.87
CB treated + 200 °C	6.22	1.423	72.09	6.38

Table S4. Photovoltaic parameters of device based on pristine CsPbBr3, and CsPbBr3after 200 °C annealed, CB treated, and 200 °C annealed after CB treated.

HTMs	$R_{\rm s}(\Omega~{ m cm}^2)$	$R_{\rm rec}~(\Omega~{ m cm}^2)$	CPE (nF cm ⁻²)
HTM-free	4.60	21.03	118.18
РЗНТ	3.46	78.77	50.67
P1Z1	3.43	106.07	32.49
ZnPc	4.55	30.46	56.19

Table S5. EIS parameters of $CsPbBr_3 PSCs$ with and without HTMs.