Supporting Information

Khurram Saleem Joya, *^a Muhammad Ali Ehsan, *^b Noor-Ul-Ain Baber,^c Manzar Sohail ^d and Zain H. Yamani ^b

^a Department of Chemistry, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.

^b Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.

^c Department of Chemistry, University of Engineering and Technology, G.T Road, Lahore, Punjab 54890, Pakistan

^d Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany

CHEMICALS AND REAGENTS:

All the chemicals and reagents were of analytical grade, obtained from Aldrich and were used as received without any purification step otherwise noted. Palladium acetylacetone $Pd(acac)_2$ (99.9%) was obtained from Sigma Aldrich, Toluene (99.99%) from Sigma Aldrich, KOH (99.99%) from Sigma Aldrich. FTO coated glass substrates are obtained from Dyesol with a resistance value of approximately 15 Ω /sq.

Catalyst	η@10 mA cm ⁻² [mV] at η=0.35 V	Tafel slope [mV decade ⁻¹]	Mass Activity [mA mg ¹⁻]	ECSA [cm ²]	TOF (s ⁻¹) at η=0.35 V
Pd ₄₀	340	44	207	4.3	0.05
Pd ₆₀	330	61	258	4.8	0.07
Pd ₉₀	310	86	292	7.2	0.08
Pd ₁₂₀	270	67	392	8	0.1
Pd ₁₈₀	240	40	560	20	0.2

Table S1. Summary of electrocatalytic activity for Pd-derived thin film electrocatalysts.

Figure S1. Cross-sectional scanning electron microscopy (SEM) images for Pd_{90} and Pd_{180} samples deposited on FTO via Aerosol-Assisted Chemical Vapor Deposition (AACVD) method.

Figure S2: EDX spectra of Pd₄₀ Pd₆₀, Pd₉₀, Pd₁₂₀ and Pd₁₈₀ films deposited on FTO substrate via Aerosol-Assisted Chemical Vapor Deposition (AACVD) method.

Figure S3. (a) XPS survey patterns of palladium film electrodes; (b) High resolution XPS study of Pd_{180} electrode showing binding energies for the Pd(0) state.

Figure S4. (**left**) Nyquist plot for Pd₄₀, Pd₆₀, Pd₉₀, Pd₁₂₀, and for Pd₁₈₀ at an applied potential of 1.48 V vs. RHE in the frequency range of 0.1 Hz to 100 KHz. (**right**) Enlarged view of the Nyquist plot for Pd₁₈₀. For each EIS analysis, data was fitted employing Randles circuit with Nova software (inset figure). Charge transfer resistance for Pd₄₀ \approx 15 Ω , Pd₆₀ \approx 13 Ω , Pd₉₀ \approx 11 Ω , Pd₁₂₀ \approx 6 Ω , and Pd₁₈₀ \approx 2.1 Ω is estimated by fitting a simplified Randles circuit.

Figure S5. Forward potential sweeps during 1^{st} (black line) and 500^{th} (Red line) LSV run for Pd₁₈₀ electrocatalytic material in 0.1 M KOH electrolyte solution at the scan rate of 10 mV s⁻¹. (Inset shows enlarged view of the LSV in 0.1 M KOH electrolyte solution)

Figure S6. Double layer capacitance measurements for evaluating the electrochemically active surface area for Pd_{40} type electrocatalytic system in 0.1 M KOH electrolyte solution. (a) cyclic voltammogram for Pd_{40} measured at varying scan rate such as (blue) 5 mV s¹⁻ (green) 10 mV s¹⁻ (red) 20 mV s¹⁻ (black) 50 mV s¹⁻ in the non-faradaic region, where all the current is supposed to be due to capacitive charging (b) charging current at the fixed potential of 0.955 V vs. RHE is plotted as a function of scan rate while slope giving the value of C_{dl}. Electrochemically active surface area is found to be 4.3 cm².

Figure S7. Double layer capacitance measurements for evaluating electrochemically active surface area for Pd_{60} type electrocatalytic system in 0.1 M KOH electrolyte solution. (a) cyclic voltammogram for Pd_{60} measured at varying scan rate such as (blue) 5 mV s¹⁻ (green) 10 mV s¹⁻ (red) 20 mV s¹⁻ (black) 50 mV s¹⁻ in the non-faradaic region, where all the current is supposed to be due to capacitive charging (b) charging current at the fixed potential of 0.955 V vs. RHE is plotted as a function of scan rate while slope giving the value of C_{dl}. Electrochemically active surface area is found to be 4.8 cm².

Figure S8. Double layer capacitance measurements for evaluating electrochemically active surface area for Pd_{90} type electrocatalytic system in 0.1 M KOH electrolyte solution. (a) cyclic voltammogram for Pd_{90} measured at varying scan rate such as (blue) 5 mV s¹⁻ (green) 10 mV s¹⁻ (red) 20 mV s¹⁻ (black) 50 mV s¹⁻ in the non-faradaic region, where all the current is supposed to be due to capacitive charging (b) charging current at the fixed potential of 0.955 V vs. RHE is plotted as a function of scan rate while slope giving the value of C_{dl}. Electrochemically active surface area is found to be 7.2 cm².

Figure S9. Double layer capacitance measurements for evaluating electrochemically active surface area for Pd_{120} type electrocatalytic system in 0.1 M KOH electrolyte solution. (a) cyclic voltammogram for Pd_{120} measured at varying scan rate such as (blue) 5 mV s¹⁻ (green) 10 mV s¹⁻ (red) 20 mV s¹⁻ (black) 50 mV s¹⁻ in the non-faradaic region, where all the current is supposed to be due to capacitive charging (b) charging current at the fixed potential of 0.955 V vs. RHE is plotted as a function of scan rate while slope giving the value of C_{dl}. Electrochemically active surface area is found to be 8 cm².

Figure S10. Double layer capacitance measurements for evaluating electrochemically active surface area for Pd₁₈₀ type electrocatalytic system in 0.1 M KOH electrolyte solution. (**a**) cyclic voltammogram for Pd₁₈₀ measured at varying scan rate such as (blue) 5 mV s¹⁻ (green) 10 mV s¹⁻ (red) 20 mV s¹⁻ (black) 50 mV s¹⁻ in the non-faradaic region, where all the current is supposed to be due to capacitive charging (**b**) charging current at the fixed potential of 0.955 V vs. RHE is plotted as a function of scan rate while slope giving the value of C_{dl}. Electrochemically active surface area is found to be 20 cm².

Figure S11. Scanning electron microscopy (SEM) images for palladium film electrode after repetitive LSVs and CCE tests.