Supporting Information

Cost-Effective Dopant-Free Star-Shaped Oligo-Arylamines for High Performance Perovskite Solar

Cells

Jun-Ying Feng,^{a,d,}† Kuan-Wen Lai,^{b,c,}† Yuan-Shin Shiue,^{a,} Ashutosh Singh,^a CH. Pavan Kumar,^a Chun-Ting Li,^a Wen-Ti Wu,^a Jiann T. Lin,^{a,*} Chih-Wei Chu,^{b,*} Chien-Cheng Chang,^{c,*} and Chaochin Su^d

^a Institute of Chemistry, Academia Sinica, 115 Nankang, Taipei, Taiwan, ^b Research Center for Applied Sciences, Academia Sinica, 115 Nankang, Taipei, Taiwan, ^c Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, ^d Department of Molecular Science and Engineering, National Taipei University of Technology, Da'an 10608, Taipei, Taiwan

Figure S1. Differential Scanning calorimetry (DSC) thermograms of of HTMs.

Figure S2. Powder X-ray diffraction patterns of the HTMs.

Figure S3. UV-Vis absorption spectrum of 4-methoxy-*N*-(4-methoxyphenyl)-*N*-phenyl-benzenamine.

Figure S4. Normalized UV-Vis absorption and emission spectra of HTMs.

Figure S5. Cyclic voltammograms of HTMs.

Figure S6. Photoelectron spectra of the HTM films.

Figure S7. Optimized structures of HTMs.

Ph-TPA-2A Ph-TPA-4A Th-TPA-4A Ph-TPA-6A TPE-TPA-8A

Figure. S8. Frontier orbitals of HTMs.

Figure S9. Cross-sectional SEM images using the device structure of FTO/TiO₂/perovskite/HTM, where the HTM is (a) **Ph-TPA-2A**, (b) **Ph-TPA-4A**, (c) **Th-TPA-4A**, (d) **Ph-TPA-6A**, (e) **TPE-TPA-8A**, and (f) Spiro-OMeTAD.

Figure S10 The AFM images using the device structure of FTO/TiO₂/perovskite/HTM, where the HTM is (a) Ph-TPA-2A, (b) Ph-TPA-4A, (c) Th-TPA-4A, (d) Ph-TPA-6A, (e) TPE-TPA-8A, and (f) Spiro-OMeTAD.

Figure S11. Contact angles of different HTMs on glass. (a) Ph-TPA-2A, (b) Ph-TPA-4A, (c) Th-TPA-4A, (d) Ph-TPA-6A, (e) TPE-TPA-8A, and (f) spiro-OMeTAD.

Figure S12. *J*–*V* plots of HTMs for both forward and reverse scan.

(a) Ph-TPA-2A

				USD			
Step1	Reagent	1 CuI	0.15 g	0.05	71%	OMeTPA	
		2 KO(<i>t</i> -Bu)	3.43 g	0.60		> 1.10	g
		3 1,10-Phenathraline	0.15 g	0.51			
		4 aniline	0.46 ml	0.08			
		5 4-Iodoanisole	2.39 g	2.23			
	Solvent	toluene	25.28 ml	0.16			
	Workup	MeOH	50.56 ml	0.72			
					-		
Step2	Reagent	1 NBS	0.65 g	0.07	92%	OMeTPABr	
	Solvent	CHCl ₃	12.36 ml	0.43		1.28	g
Step3	Reagent	1 1,4-dimethylpiperazine-2,3-dione	214.89 mg	0.75	93%	OMeTPAdione	
		2 n-BuLi	1.98 ml	0.16		0.93	g
	Solvent	THF	5.76 ml	0.24			
	Workup	DCM	165.03 ml	2.46			
					-		
Step4	Reagent	1 benzaldehyde	0.21 ml	0.01	95%	Ph-TPA-2A	
		2 ammonium acetate	2.46 g	0.21		1.00	g
	Solvent	HOAc	25.28 ml	0.54		9.31	USD/g
	Workup	HOAc	4.21 ml	0.09			
Step3 Step4	Reagent Solvent Workup Reagent Solvent Workup	1 1,4-dimethylpiperazine-2,3-dione 2 <i>n</i> -BuLi THF DCM 1 benzaldehyde 2 ammonium acetate HOAc HOAc	214.89 mg 1.98 ml 5.76 ml 165.03 ml 0.21 ml 2.46 g 25.28 ml 4.21 ml	; 0.75 0.16 0.24 2.46 0.01 0.21 0.54 0.09	93%	OMeTPAdione 0.93 Ph-TPA-2A 1.00 9.31	g USD/

(b) Ph-TPA-4A

(0)	1 11 1										
							USD				
Step1	Reagent	1	CuI	0	.18	g	0.06		71%	OMeTPA	
		2	KO(t-Bu)	3	.98	g	0.70			1.28	g
		3	1,10-Phenathraline	0	.17	g	0.59				
		4	aniline	0	.54	ml	0.09				
		5	4-Iodoanisole	2	.76	g	2.58				
	Solvent		toluene	29	.27	ml	0.18				
	Workup		MeOH	58	.54	ml	0.83				
								~			
Step2	Reagent	1	NBS	0	.75	g	0.08	-	92%	OMeTPABr	
	Solvent		CHCl ₃	14	.31	ml	0.50			1.48	g
Step3	Reagent	1	1,4-dimethylpiperazine-2,3-dione	248	.78	mg	0.87	-	93%	OMeTPAdione	
		2	n-BuLi	2	.29	ml	0.19			1.08	g
	Solvent		THF	6	.67	ml	0.28				
	Workup		DCM	191	.06	ml	2.84				
								-			
Step4	Reagent	1	terephthalaldehyde	108	.94	mg	0.05		86%	Ph-TPA-4A	
		2	ammonium acetate	0	.94	g	0.08		\rightarrow	1.00	g
	Solvent		HOAc	32	.52	ml	0.69			10.96	USD/g
	Workup		HOAc	16	.26	ml	0.35				

Figure S13. Flow chart for estimation of the synthetic cost for HTMs: (a) Ph-TPA-2A, (b) Ph-TPA-4A, (c) Th-TPA-4A, (d) Ph-TPA-6A, (e) TPE-TPA-8A.

(c) Th-TPA-4A

						USD			
Step1	Reagent	1	CuI	0.18	3 g	0.06	71%	OMeTPA	
		2	KO(t-Bu)	4.08	3 g	0.72		1.31	g
		3	1,10-Phenathraline	0.17	g	0.61			
		4	aniline	0.55	5 ml	0.09			
		5	4-Iodoanisole	2.83	g g	2.65			
	Solvent		toluene	30.00) ml	0.19			
	Workup		MeOH	60.00) ml	0.85			
							-		
Step2	Reagent	1	NBS	0.77	g	0.08	92%	OMeTPABr	
	Solvent		CHCl ₃	14.67	7 ml	0.51	-	1.52	g
Step3	Reagent	1	1,4-dimethylpiperazine-2,3-dione	255.00) mg	0.89	93%	OMeTPAdione	
		2	n-BuLi	2.35	5 ml	0.19		1.11	g
	Solvent		THF	6.83	3 ml	0.29		-	
	Workup		DCM	195.83	3 ml	2.92			
							-		
Step4	Reagent	1	2,5-Thiophenedicarboxaldehyde	116.67	7 mg	4.40	85%	Th-TPA-4A	
		2	ammonium acetate	0.97	g	0.08		1.00	g
	Solvent		HOAc	33.33	3 ml	0.71		15.59	USD/g
	Workup		HOAc	16.67	7 ml	0.36			

.....

(d) Ph-TPA-6A

(d)	Ph-1	Ρ	'A-6A						
()						USD			
Step1	Reagent	1	CuI	0.19	g	0.07	71%	OMeTPA	
		2	KO(t-Bu)	4.22	g	0.74		1.35	g
		3	1,10-Phenathraline	0.18	g	0.63			
		4	aniline	0.57	ml	0.10			
		5	4-Iodoanisole	2.93	g	2.74			
	Solvent		toluene	31.03	ml	0.19			
	Workup		MeOH	62.07	ml	0.88			
							-		
Step2	Reagent	1	NBS	0.79	g	0.08	92%	OMeTPABr	
	Solvent		CHCl ₃	15.17	ml	0.53	-	1.57	g
Step3	Reagent	1	1,4-dimethylpiperazine-2,3-dione	263.79	mg	0.92	93%	OMeTPAdione	
		2	n-BuLi	2.43	ml	0.20		1.15	g
	Solvent		THF	7.07	ml	0.30		_	
	Workup		DCM	202.59	ml	3.02			
							-		
Step4	Reagent	1	benzene-1,3,5-tricarbaldehyde	93.10	mg	29.01	83%	Ph-TPA-6A	
		2	ammonium acetate	0.89	g	0.08		1.00	g
	Solvent		HOAc	34.48	ml	0.74		40.57	USD/g
	Workup		HOAc	17.24	ml	0.37			

Figure S13. (conti.)

(e) TPE-TPA-8 A	1
------------------------	---

					USD			
Step1	Reagent	1 CuI	0.53	g	0.18	71%	OMeTPA	
		2 KO(<i>t</i> -Bu)	11.75	g	2.07		> 3.77	g
		3 1,10-Phenathraline	0.50	g	1.75			
		4 aniline	1.59	ml	0.27			
		5 4-Iodoanisole	8.17	g	7.64			
	Solvent	toluene	86.54	ml	0.54			
	Workup	MeOH	173.08	ml	2.46			
Step2	Reagent	1 NBS	2.22	g	0.23	92%	OMeTPABr	
	Solvent	CHCl ₃	42.31	ml	1.48		4.38	g
Step3	Reagent	1 1,4-dimethylpiperazine-2,3-dione	735.58 1	mg	2.56	93%	OMeTPAdione	
		2 n-BuLi	6.78	ml	0.56		3.20	g
	Solvent	THF	19.71	ml	0.83			
	Workup	DCM	564.90	ml	8.41			
Step4	Reagent	1 4,4',4",4"'-(ethene-1,1,2,2- tetrayl)tetrabenzaldehyde	521.63 1	mg	233.85	28%	TPE-TPA-8A	
		2 ammonium acetate	3.62	g	0.31		1.00	g
	Solvent	HOAc	86.54	ml	1.85		265.99	USD/g
	Workup	HOAc	48.08	ml	1.03			

Figure S13. (conti.)

Figure S14. The *J*-*V* plot of doped Ph-TPA-4A compares with non-doped Ph-TPA-4A.

Figure S15. At-rest stability tests of PSCs with various HTMs based on the values of (a) V_{OC} , (b) J_{SC} , and (c) *FF*, measured in a N₂ golve box. Continuous stability test of the **Ph-TPA-4A** PSC under a continuous light soaking (1 sun) for 600 s, based on the values of (a) V_{OC} , (b) J_{SC} , and (c) *FF*, in a N₂ glove box (Black lines) or in air (Blue lines).

N_States	E(ev)	WL (nm)	f	Major Contributions
1	3.01	410.62	0.5652	H→L (89%)
2	3.26	379.38	0.5533	H→L+1 (88%)
3	3.34	371.08	0.0786	H→L+2 (70%), H→L+3 (10%)
4	3.38	366.43	0.2644	H-1→L (80%), H→L+2 (10%)
5	3.43	361.39	0.011	H-1→L+2 (18%), H→L+3 (70%)
6	3.70	334.83	0.0402	H-1→L+1 (95%)
7	3.71	333.67	0.016	H-1→L+2 (67%), H→L+2 (13%)
8	3.88	319.32	0.0159	H-1→L+3 (46%), H→L+6 (26%)
9	3.91	316.65	0.2363	H-1→L+5 (19%), H→L+5 (68%)
10	3.94	314.81	0.1666	H→L+8 (18%), H→L+9 (34%)

Table S1a. Calculated excitation energies for Ph-TPA-2A in THF solution.

WL: wavelength; *f*: oscillator strength; H: HOMO; H-n: HOMO-n; L: LUMO; L+n: LUMO+n.

N_States	E(ev)	WL (nm)	f	Major Contributions
1	2.66	465	1.4123	H → L (93%)
2	2.88	430	0.1073	H-1→L (95%)
3	3.03	408	0.1706	H-2→L (97%)
4	3.08	401	0.1961	H-3→L (76%), H→L+1 (19%)
5	3.15	393	0.485	H-3→L (21%), H→L+1 (67%)
6	3.36	368	0.0299	H→L+3 (67%), H→L+6 (12%)
7	3.37	366	0.4771	H-1→L+2 (37%), H→L+2 (37%)
8	3.42	362	0.2026	H-2→L+4 (12%), H-1→L+4 (40)
9	3.43	361	0.0316	H-3→L+3 (17%), H→L+6 (58%)
10	3.48	356	0.0507	H-2→L+5 (30%), H-1→L+5 (49%)

Table S1b. Calculated excitation energies for Ph-TPA-4A in THF solution.

WL: wavelength; *f*: oscillator strength; H: HOMO; H-n: HOMO-n; L: LUMO; L+n: LUMO+n.

N_States	E(ev)	WL (nm)	f	Major Contributions
1	2.49	498	1.2925	H→L (97%)
2	2.73	453	0.0169	H-1→L(99%)
3	2.95	420	0.1921	H-2→L (94%)
4	2.98	415	0.0608	H-3→L (91%)
5	3.11	398	0.2891	H-1→L+1 (13%), H→L+1 (72%)
6	3.15	393	0.876	H-1→L+2 (14%), H→L+2 (67%)
7	3.31	373	0.03	H-1->L+3 (24%), H→L+3 (64%)
8	3.34	371	0.2847	H-4→L (31%), H→L+4 (40%)
9	3.35	370	0.5009	H-4→L (56%), H→L+4 (22%)
10	3.42	362	0.0241	H-1→L+5 (26%), H→L+5 (40%)

Table S1c. Calculated excitation energies for Th-TPA-4A in THF solution.

WL: wavelength; *f*: oscillator strength; H: HOMO; H-n: HOMO-n; L: LUMO; L+n: LUMO+n.

Table S1d. Calculated excitation energies for Ph-TPA-6A in THF solution.

N_States	E(ev)	WL (nm)	f	Major Contributions
1	2.88	430.49	0.6595	H-2→L (36%), H-1→L+1 (20%),
				H→L (34%)
2	2.89	428.60	0.4959	H-2→L+1 (15%), H-1→L (35%), H-
				1→L+1 (13%), H→L+1 (16%)
3	2.90	427.14	0.1116	H-1→L+1 (35%), H→L (28%),
				H→L+1 (21%)
4	2.96	417.59	0.0824	H-2→L (36%), H-1→L (18%), H-1-
				>L+1 (24%), H→L (15%)
5	2.98	415.99	0.0754	H-2→L (15%), H-2→L+1 (23%), H-
				1→L (34%), H→L (10%), H→L+1
				(13%)
6	2.98	415.22	0.0699	H-2→L+1 (47%), H→L+1 (42%)
7	3.19	388.13	0.4852	H-2→L+2 (12%), H→L+2 (20%),
				H→L+3 (34%)
8	3.20	387.24	0.5497	H-3→L (10%), H-2→L+2 (15%), H-
				1→L+4 (19%), H→L+2 (21%)
9	3.21	386.60	0.8732	H-2→L+4 (20%), H-1→L+2 (34%)
10	3.26	380.53	0.3661	H-4→L (20%), H-3→L (42%)

WL: wavelength; *f*: oscillator strength; H: HOMO; H-n: HOMO-n; L: LUMO; L+n: LUMO+n.

N_States	E(ev)	WL (nm)	f	Major Contributions
1	2.37	522.98	0.5342	H → L (95%)
2	2.47	500.78	0.0326	H-1→L (90%)
3	2.48	498.48	0.5542	H-2→L (91%)
4	2.53	489.83	0.004	H-3→L (96%)
5	2.79	444.14	0.0931	H-4→L (90%)
6	2.81	440.82	0.1042	H-5→L (93%)
7	2.82	439.50	0.1029	H-6→L (92%)
8	2.83	437.50	0.0526	H-7 → (91%)
9	2.97	416.91	1.0023	H→ L+1 (78%)
10	2.99	413.63	0.4001	H→ L+2 (70%)

Table S1e. Calculated excitation energies for TPE-TPA-8A in THF solution.

WL: wavelength; *f*: oscillator strength; H: HOMO; H-n: HOMO-n; L: LUMO; L+n: LUMO+n.

Table S1f. Calculated HOMOs and LUMOs energies (eV) of the oligo arylamine HTMs in THF medium using B3LYP function.

	Ph-TPA-2A	Ph-TPA-4A	Th-TPA-4A	Ph-TPA-	TPE-TPA-
				6A	8 A
H-2	-5.78	-5.04	-5.07	-4.79	-4.78
H-1	-5.09	-4.88	-4.84	-4.77	-4.77
Н	-4.77	-4.72	-4.67	-4.76	-4.71
\mathbf{L}	-1.30	-1.68	-1.80	-1.49	-2.01
L+1	-1.00	-1.08	-1.11	-1.48	-1.39
L+2	-0.89	-0.91	-1.03	-1.11	-1.36
H-L gap	3.47	3.04	2.87	3.27	2.70

HTM name	Perovskite	PCE (%)	$\mu_{\rm h}({ m cm}^2{ m V}^{-1}{ m s}^{-1})$	ref.	Molecular structure
	<u>Type I</u>				$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $
PdMe ₂ Pc	MAPbI ₃	16.28	3.42×10^{-2}	73	
3F-br-4C ^a	MAPbI ₃	16.9	$4.0 imes 10^{-5}$	75	PdMe2PC 3-Ehr dC S-N SL N-S
PCA-1	MAPbI ₃	18.17	$2.0 imes 10^{-3 b}$	24	$\begin{array}{c} \mathbf{C}_{\theta}\mathbf{H}_{13} \\ \mathbf{L}\mathbf{B}\mathbf{U}_{\mathbf{y}} \\ \mathbf{L}\mathbf{U}_{\mathbf{y}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf{L}\mathbf{U}_{\mathbf{z}} \\ \mathbf$
CuPc-OBu	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	17.6	$4.30 imes 10^{-4}$	25	DFBT(DTS-FBTTh ₂) ₂ HE _{EH}
CuPc nanorod	MAPbI ₃	16.1	10-2	72	
ZnPcNO ₂ -OPh	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	14.35	2.80×10^{-5}	83	
M7-TFSI	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	17.7	3.24×10^{-4}	67	
DFBT(DTS-FBTTh ₂) ₂	MAPbI ₃	17.3	$1.78 imes 10^{-4}$	68	CuPc OPh DERDTS-TBDT HE HE EH
ACE-QA-ACE	MAPbI ₃	18.2	$2.3 imes 10^{-4}$	69	$ \begin{array}{c} R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_1 $
DERDTS-TBDT	MAPbI _{3-x} Cl _x	16.2	1×10^{-4}	70	$\begin{array}{c} PhO \leftarrow I \\ N \\ $
KR321	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	19.03	$2.6 imes 10^{-4}$	39	$Z_nPc-NO_2 OPh \qquad \qquad$
FA-CN	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	18.9	$1.2 imes 10^{-4}$	59	

Table S2. The PCE (> 14%) and hole mobility values for HTMs published in 2016–2019.

Table S2. (Conti.)

HTM name	Perovskite	PCE (%)	$\mu_{\rm h} ({\rm cm^2~V^{-1}~s^{-1}})$	ref.	Molecular structure
	<u>Type II</u>				
mDPA-DBTP	MAPbI ₃	18.09	6.34 × 10 ⁻⁴	60	$ \begin{array}{c} 0 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
BTF4	$(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$	18.03	1.17×10^{-4}	61	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ $
TPA-ANT-TPA	MAPbI ₃	17.5	2.6×10^{-4}	62	
YN2	(FAPbI ₃) _{0.85} (MAPbBr ₃) _{0.15}	19.27	9.65 × 10 ⁻⁴	63	IDTT-TPA
Z34	MAPbI ₃	16.1	7.46×10^{-4}	71	\sim
IDTT-TPA	MAPbI ₃	15.9	6.46×10^{-4}	79	$\begin{array}{c} N \\ N $
X44	$[FA]_{0.85}(MA)_{0.15}Pb(I_{0.85}Br_{0.15})_3$	15.2	-	80	$ \begin{array}{c} & NC \\ & BTF4 \\ & O_{-} \\ & H_{13}C_{6} \\ & C_{6}H_{13} \\ \end{array} \right) \begin{array}{c} R_{3} \\ & S \\ R_{3} \\ & S \\ R_{3} \\ & R_{3} \\ \end{array} $
СМО	MAPbI ₃	15.92	1.4×10^{-5}	82	IDTC ₆ -TPA Z34 YN2
IDTC ₆ -TPA	MAPbI ₃	14.52	4.26×10^{-4}	84	
M104	$(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$	16.50	1.12×10^{-4}	85	
YN3	$(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$	18.84	2.25×10^{-4}	65	$ \begin{array}{c} \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \begin{array}{c} n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} n \\ n \\ \end{array} \\$
TPAC-3M	MAPbI ₃	17.54	1.1 × 10 ⁻⁵	66	-0~ X44 ~_0- 0-
BTPA-TCNE	MAPbI ₃	16.94	3.14×10^{-5}	49	
NP2	$Cs_{0.05}(FA_{0.17}MA_{0.83})_{0.95}Pb(Br_{0.17}I_{0.83})_{3}$	16.4	4.23 × 10 ⁻²	74	

Table S2. (C	Conti.)
--------------	---------

HTM name	Perovskite	PCE (%)	$\mu_{\rm h} ({\rm cm^2~V^{-1}~s^{-1}})$	ref.	Molecular structure
	<u>Type III</u>				
X62	mixed cation/mixed halide	15.9	$7.95 imes 10^{-5}$	76	
Spiro-S	MAPbI ₃	15.92	1.90×10^{-5}	77	
Trux-OMeTAD	MAPbI ₃	18.6	2×10^{-3}	31	
TTE-2	$(FAPbI_3)_{0.95}(MAPbBr_3)_{0.05}$	20.04	6.18×10^{-4}	38	
НТВ-ОМе	MAPbI ₃	17.3	$5.48 imes 10^{-4}$	34	-0 X62 O- S Spiro-S S
TPP-SMeTAD	MAPbI ₃	16.2	7.4×10^{-5}	84	
2,7-BCz-OMeTAD	$Cs_{0.05}FA_{0.79}MA_{0.16}PbI_{2.49}Br_{0.51}$	17.6	$0.95 imes 10^{-4}$	37	
<i>m</i> -MTDATA ^{<i>a</i>}	$Cs_{0.05}(FA_{0.85}MA_{0.15})_{0.95}Pb(I_{0.85}Br0_{.15})_{3}$	18.12	4.3 × 10 ⁻⁵	35	
<i>m</i> -MTDATA ^{<i>a</i>}	MAPbI ₃	17.73	-	36	
TPD-4MeOTPA	$(FAI)_{0.85}(PbI_2)_{0.85}(MABr)_{0.15}(PbBr_2)_{0.15}$	15.28	$4.92 imes 10^{-4}$	81	
ТСР-ОН	(FAI) _{0.81} (PbI ₂) _{0.85} (MAPbBr ₃) _{0.15}	16.97	$5.85 imes 10^{-6}$	33	P R3 m-MTDATA M-MTDATA
LD-29	$(FAPbI_3)_{0.85}(MAPbBr_3)_{0.15}$	14.29	1.72×10^{-5}	86	
ST1	MAPbI ₃	15.4	$2.57 imes 10^{-4}$ c	78	b - b - b - b - b - b - c
	<u>Others</u>				
V1036 ^{<i>a</i>}	$Cs_{0.05}(MA_{0.17}FA_{0.83})_{0.95}Pb(I_{0.83}Br_{0.17})_3$	17.8	-	64	
TAPC ^a	MAPbI ₃	18.80	$4.94 \times 10^{-4 b}$	58	2,7-BCz-OMeTAD
					R ₃ TPD-4MeOTPA R ₃
^{<i>a</i>} inverted PS	C; ^b annealed HTM	film;	^c determine	d	via TOF. EH = 2-ethylhexyl

Figure S16. ¹H NMR spectrum of OMeTPA-dione

Figure S19. ¹³C NMR spectrum of Ph-TPA-2A

Figure S20. ¹H NMR spectrum of Ph-TPA-4A

Figure S21. ¹³C NMR spectrum of Ph-TPA-4A

Figure S22. ¹H NMR spectrum of Th-TPA-4A

Figure S23. ¹³C NMR spectrum of Th-TPA-4A

Figure S24. ¹H NMR spectrum of Ph-TPA-6A

Figure S25. ¹³C NMR spectrum of Ph-TPA-6A

Figure S27. ¹³C NMR spectrum of TPE-TPA-8A

Figure S28. MALDI-TOF mass spectrum of Ph-TPA-2A

Figure S29. MALDI-TOF mass spectrum of Ph-TPA-4A

Figure S31. MALDI-TOF mass spectrum of Ph-TPA-6A

Figure S32. MALDI-TOF mass spectrum of TPE-TPA-8A