Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information for:

Co_xFe_yN Nanoparticles Decorated on Graphene Sheets as High-Performance Electrocatalysts for Oxygen Evolution Reaction

Authors: Haixia Liu,^a Xinyao Lu,^a Yi Hu,^a Renpeng Chen,^a Peiyang Zhao,^a Lei Wang,^a Guoyin Zhu,^a Lianbo Ma^a and Zhong Jin^{*ab}

^a Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic

Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,

China.

^b Shenzhen Research Institute of Nanjing University, Shenzhen 518063, China.

*E-mail address of corresponding author: <u>zhongjin@nju.edu.cn</u> (Z. Jin)

Catalyst	Substrate	η ₁₀ (mV)	Electrolyte	Stability retention	Ref
Co ₃ Fe ₁ N/graphene	RDE	266	1 M KOH		This study
Co ₃ Fe ₁ N/graphene	Carbon Paper		1 M KOH	After testing for 4 h and 16 h are compared, the overpotential increased about 5 mV	This study
FeCo-Co ₄ N/N-C	RDE	280	1 M KOH	79.9% after 12 h at 10 mA/cm ²	Rf S1
NiCo ₂ N/NF	Ni Foam	260	1 M KOH	Almost 100% after 40 h at 10 mA/cm ²	Rf 29
Ni ₃ FeN nanoparticles	Glass Carbon	280	1 M KOH	Almost 100% after 9 h, at 10 mA/cm ²	Rf 31
Pt/C	Glass Carbon		1 M KOH	exhibited a negligible OER activity	Rf 31
RuO ₂	RED	330	1 M KOH	65.2%, after 12 h, at 10 mA/cm ²	Rf S1
IrO ₂	Modified working electrode	338	1 M KOH	the overpotential increased 94 mV after 6 h at 10 mA/cm ²	Rf S2
Pyrolyzed IrO ₂	RED	345	1 M KOH	30% at η= 0.37 V after 250 min	Rf S3
Leached- Ir _{0.7} Co _{0.3} O _x	RDE	320	1 M KOH	65% at η = 0.37 V after 250 min	Rf S3

Table S1. The comparison of OER catalytic parameters of CoxFeyN/graphene with other previous reported electrode materials.

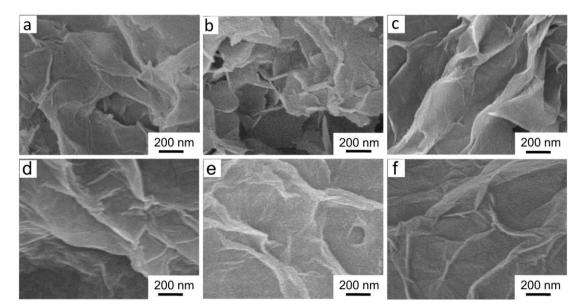


Figure S1. SEM images of ultrathin Co_xFe_y -LDH/graphene nanosheets: (a) $Co(OH)_2$ /graphene, (b) $Co_{3.6}Fe_{0.4}$ -LDH/graphene, (c) Co_3Fe_1 -LDH/graphene, (d) Co_2Fe_2 -LDH/graphene, (e) Co_1Fe_3 -LDH/graphene and (f) $Fe(OH)_3$ /graphene, respectively.

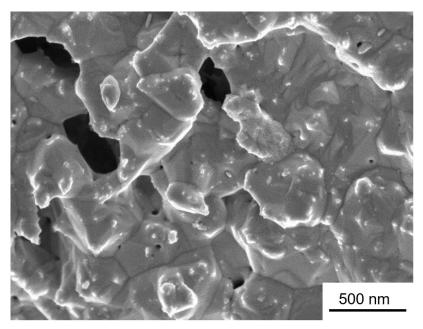


Figure S2. The SEM image of Co_3Fe_1N control sample without graphene.

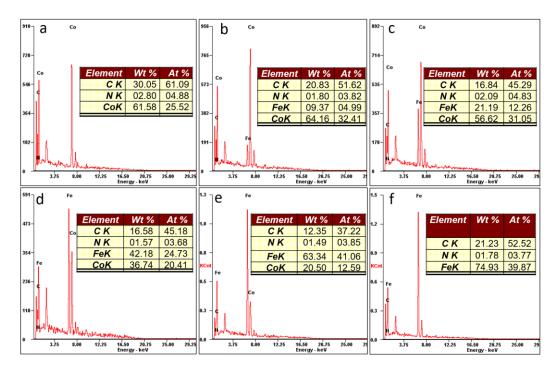
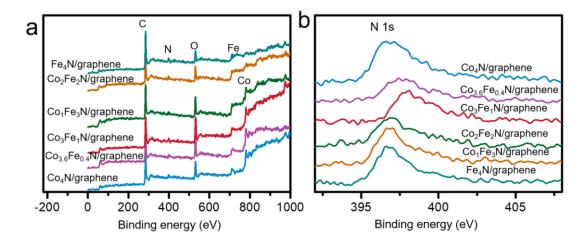



Figure S3. EDX spectra of Co_xFe_yN /graphene catalysts: (a) Co_4N /graphene, (b) $Co_{3.6}Fe_{0.4}N$ /graphene, (c) Co_3Fe_1N /graphene, (d) Co_2Fe_2N /graphene, (e) Co_1Fe_3N /graphene and (f) Fe_4N /graphene, respectively.

Catalysts	Atomic ratio n(Co) : n(Fe)
Co _{3.6} Fe _{0.4} N/graphene	0.99 : 0.11
Co ₃ Fe ₁ N/graphene	0.86 : 0.26
Co ₂ Fe ₂ N/graphene	0.47 : 0.52
Co1Fe3N/graphene	0.25 : 0.81

Table S2. ICP-OES analysis of Co_xFe_yN /graphene samples.

Figure S4. (a) XPS survey spectra and (b) High-resolution XPS spectra at N 1s region of Co_xFe_yN/graphene samples, respectively.

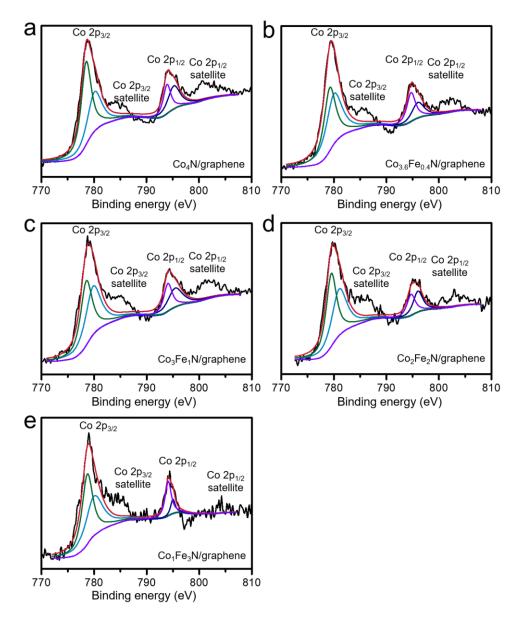


Figure S5. XPS spectra at Co 2p region of $Co_xFe_yN/graphene$ catalysts: (a) $Co_4N/graphene$, (b) $Co_{3.6}Fe_{0.4}N/graphene$, (c) $Co_3Fe_1N/graphene$, (d) $Co_2Fe_2N/graphene$, and (e) $Co_1Fe_3N/graphene$, respectively.

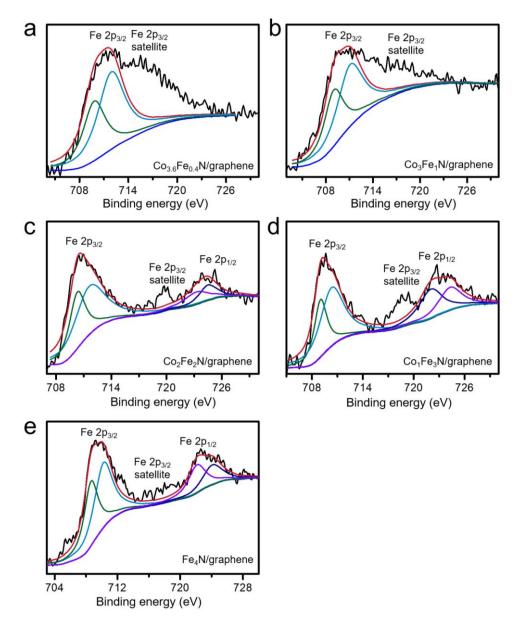


Figure S6. XPS spectra at Fe 2p region of $Co_xFe_yN/graphene$ catalysts: (a) $Co_{3.6}Fe_{0.4}N/graphene$, (b) $Co_3Fe_1N/graphene$, (c) $Co_2Fe_2N/graphene$, (d) $Co_1Fe_3N/graphene$ and (e) $Fe_4N/graphene$, respectively.

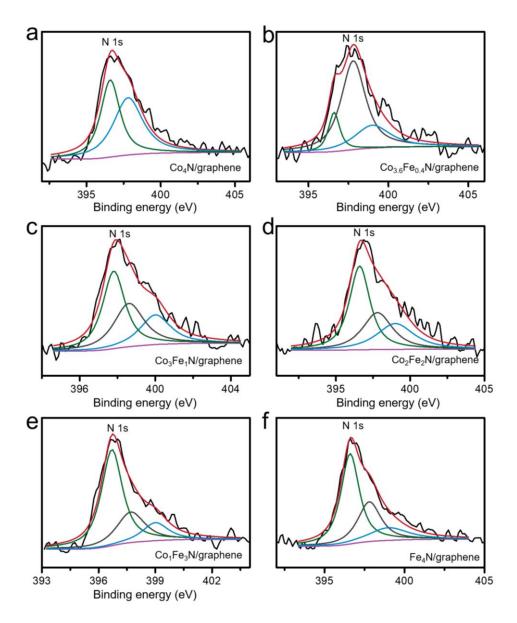
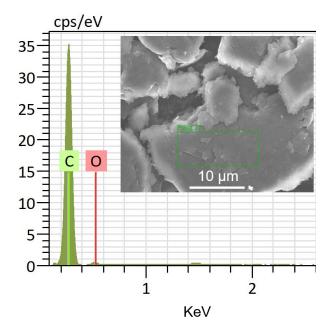



Figure S7. XPS spectra at N 1s region of $Co_xFe_yN/graphene$ catalysts: (a) $Co_4N/graphene$. (b) $Co_{3.6}Fe_{0.4}N/graphene$, (c) $Co_3Fe_1N/graphene$, (d) $Co_2Fe_2N/graphene$, (e) $Co_1Fe_3N/graphene$ and (f) $Fe_4N/graphene$, respectively.

Figure S8. EDX spectrum of pristine graphene treated at 600 °C for 3 h under ammonia atmosphere.

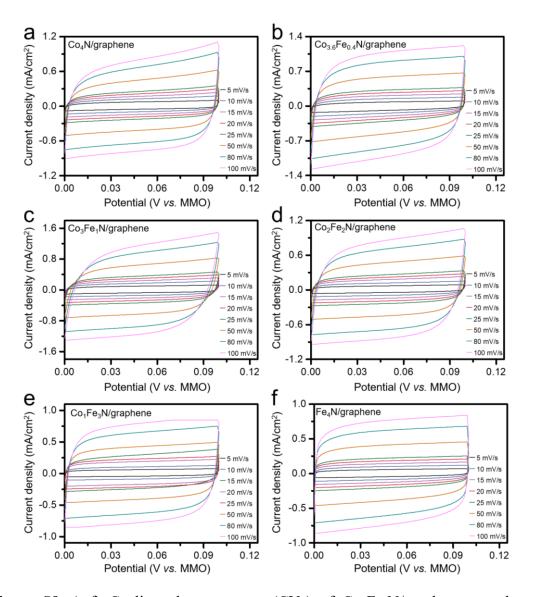
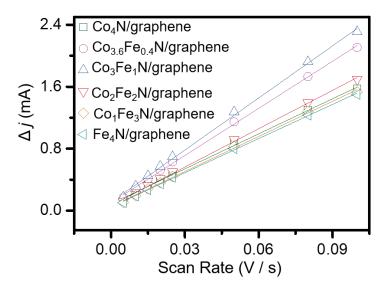



Figure S9. (a-f) Cyclic voltammograms (CVs) of $Co_xFe_yN/graphene$ samples at different scan rates from 5 to 100 mV/s between 0-0.1 V vs. Hg/HgO reference electrode (MMO) in 1.0 M KOH.

Figure S10. C_{dl} values of $Co_xFe_yN/graphene$ samples at 0.05 V vs. MMO. The C_{dl} values are calculated to be: 15.09 mF cm⁻² for $Co_4N/graphene$, 20.29 mF cm⁻² for $Co_{3.6}Fe_{0.4}N/graphene$, 22.41 mFcm⁻² $Co_3Fe_1N/graphene$, 16.51 mFcm⁻² for $Co_2Fe_2N/graphene$, 15.10 mFcm⁻² for $Co_1Fe_3N/graphene$ and 14.69 mFcm⁻² for $Fe_4N/graphene$, respectively. These results indicate that $Co_3Fe_1N/graphene$ has the largest C_{dl} value and ECSA among the samples.

Reference

- S1. X. hu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, X. Zhuang, S. Yang, L. He, H. Liu,
 S. Dai, *Adv. Mater.* 2017, 29, 1704091
- S2 F. Song, X. L. Hu, Nature Commun. 2014, 5, 4477.
- W. Hu, H. Zhong, W. Liang, S. Chen, ACS Appl. Mater. Interfaces 2014, 6, 12729-12736.