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In Fig. S1a, the FT-IR spectrum of PAN before acid-treatment showed a unique peak at 2243 

cm-1 which is attributed to the nitrile (-C≡N) group of PAN. However, after treatment in Fig. 

S1b, PAN was hydrolyzed to form a sulfonated polyacrylamide (-SO3H, O=C-NH2) group. The 

sulfonated polyacrylamide group of sulfonated PAN is determined by the amide group (NH2-

C=O) and sulfonic acid group (SO3H) characterized by five peaks of N-H, C-N, C=O, O=S=O, 

and C-S. Therefore, 588 cm-1 (N-H), 1214 cm-1 (C-N), 1580 cm-1 (C=O), 1197 cm-1 (O=S=O), 

and 1040 cm-1 (C-S) were definitely confirmed from Fig. S1b. In the case of CNTs, peaks 

located at 1640 cm-1
 (C=O) and 3400 cm-1 (O-H) corresponding to the carboxylic acid group 

(-COOH) attached onto surfaces of the acid-treated CNTs were newly observed after acid-

treatment, as shown in Fig. S1d. Thererfore, the attachments of both carboxylic group on CNTs 

and sulfonated polyacrylamide group on PAN after acid-treatment were directly proven by FT-

IR results.

Fig. S1. FT-IR spectra of PAN and CNTs before and after acid-treatment: (a) PNA before 

acid-treatment, (b) PNA after acid-treatment, (c) CNTs before acid-treatment, and (d) CNTs 

after acid-treatment.
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Fig. S2. TGA curve of (a) the as-spun Fe(acac)3/PAN/CNTs composite nanofibers obtained 

after electrospinning process and (b) HI-CNT/Fe2O3 fiber .
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Fig. S3. (a,b) N2 adsorption-desorption isotherms and (c,d) BJH adsorption pore size 

distributions: (a,c) as-spun Fe(acac)3/PAN/CNTs composite nanofibers and (b,d) HI-

CNT/Fe2O3 nanofibers. 
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Fig. S4. Pore size distribution of HI-CNT/Fe2O3 nanofibers calculated from the N2-DFT 

model using desorption isotherms.
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Fig. S5. CV curve of the CNTs prepared by acid- and heat- treatments at a scan rate of 0.1 mV 

s-1 in the 0.001–3.0 V range.
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Fig. S6. (a) FE-SEM image, (b) EDS spectrum, (c) charge-discharge profile, and (d) cycle 

performance of HI-CNT/Fe2O3 nanofibers etched by HCl solution. 
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Fig. S7 Electrochemical impedance spectra (EIS) of free-standing HI-CNT/Fe2O3 nanofibers 

electrode cell with cycling.
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Fig. S8. Electrochemical properties of LiFePO4 fiber cathode in half-cell: (a) charge/discharge 

profile and (b) cycling performance at a current density of 200 mA g-1.


