Supporting Information

Highly-Integrated and Interconnected CNT Hybrid Nanofibers Decorated with α-Iron Oxide as Freestanding Anodes for Flexible Lithium Polymer Batteries

Se Hwan Oh^a, O Hyeon Kwon^b, Yun Chan Kang^c, Jae-Kwang Kim^{b*}, Jung Sang Cho^{a*}

^aDepartment of Engineering Chemistry, Chungbuk National University, Chungbuk 361-763, Republic of Korea

^bDepartment of Solar & Energy Engineering, Cheongju University, Cheongju, Chungbuk, 28503, Republic of Korea

^cDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea

*Corresponding authors

Jung Sang Cho Tel.: (+82) 10-2649-5966; Fax: (+82) 43-262-2380. E-mail: jscho@cbnu.ac.kr Jae-Kwang Kim Tel.: (+82) 43-229-8557; Fax: (+82) 43-229-7322. E-mail: jaekwang@cju.ac.kr In Fig. S1a, the FT-IR spectrum of PAN before acid-treatment showed a unique peak at 2243 cm⁻¹ which is attributed to the nitrile (-C=N) group of PAN. However, after treatment in Fig. S1b, PAN was hydrolyzed to form a sulfonated polyacrylamide (-SO₃H, O=C-NH₂) group. The sulfonated polyacrylamide group of sulfonated PAN is determined by the amide group (NH₂-C=O) and sulfonic acid group (SO₃H) characterized by five peaks of N-H, C-N, C=O, O=S=O, and C-S. Therefore, 588 cm⁻¹ (N-H), 1214 cm⁻¹ (C-N), 1580 cm⁻¹ (C=O), 1197 cm⁻¹ (O=S=O), and 1040 cm⁻¹ (C-S) were definitely confirmed from Fig. S1b. In the case of CNTs, peaks located at 1640 cm⁻¹ (C=O) and 3400 cm⁻¹ (O-H) corresponding to the carboxylic acid group (-COOH) attached onto surfaces of the acid-treated CNTs were newly observed after acid-treatment, as shown in Fig. S1d. Therefore, the attachments of both carboxylic group on CNTs and sulfonated polyacrylamide group on PAN after acid-treatment were directly proven by FT-IR results.

Fig. S1. FT-IR spectra of PAN and CNTs before and after acid-treatment: (a) PNA before acid-treatment, (b) PNA after acid-treatment, (c) CNTs before acid-treatment, and (d) CNTs after acid-treatment.

Fig. S2. TGA curve of (a) the as-spun $Fe(acac)_3/PAN/CNTs$ composite nanofibers obtained after electrospinning process and (b) HI-CNT/Fe₂O₃ fiber .

Fig. S3. (a,b) N_2 adsorption-desorption isotherms and (c,d) BJH adsorption pore size distributions: (a,c) as-spun Fe(acac)₃/PAN/CNTs composite nanofibers and (b,d) HI-CNT/Fe₂O₃ nanofibers.

Fig. S4. Pore size distribution of HI-CNT/Fe₂O₃ nanofibers calculated from the N₂-DFT model using desorption isotherms.

Fig. S5. CV curve of the CNTs prepared by acid- and heat- treatments at a scan rate of 0.1 mV s⁻¹ in the 0.001–3.0 V range.

Fig. S6. (a) FE-SEM image, (b) EDS spectrum, (c) charge-discharge profile, and (d) cycle performance of HI-CNT/Fe₂O₃ nanofibers etched by HCl solution.

Fig. S7 Electrochemical impedance spectra (EIS) of free-standing HI-CNT/Fe₂O₃ nanofibers electrode cell with cycling.

Fig. S8. Electrochemical properties of LiFePO₄ fiber cathode in half-cell: (a) charge/discharge profile and (b) cycling performance at a current density of 200 mA g^{-1} .