Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supplementary Materials for: Double perovskites as p-type conducting transparent semiconductors: A high-throughput search

Hai-Chen Wang,¹ Paul Pistor,¹ Miguel A. L. Marques,^{1, *} and Silvana Botti²

¹Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany ²Institut fr Festkörpertheorie und -Optik, Friedrich-Schiller-Universität Jena and European Theoretical Spectroscopy Facility, Max-Wien-Platz 1, 07743 Jena, Germany

FIG. S1: Distance to the convex hull for the $Rb_2B^{(1)}B^{(2)}F_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

^{*} miguel.marques@physik.uni-halle.de

FIG. S2: Distance to the convex hull for the $Rb_2B^{(1)}B^{(2)}Cl_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

FIG. S3: Distance to the convex hull for the $Rb_2B^{(1)}B^{(2)}Br_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

FIG. S4: Distance to the convex hull for the $Rb_2B^{(1)}B^{(2)}I_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

FIG. S5: Distance to the convex hull for the $Cs_2B^{(1)}B^{(2)}F_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

FIG. S6: Distance to the convex hull for the $Cs_2B^{(1)}B^{(2)}Br_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

B⁽¹⁾

FIG. S7: Distance to the convex hull for the $Cs_2B^{(1)}B^{(2)}I_6$ double perovskites in meV/atom. Green corresponds to theoretically stable compounds.

FIG. S8: The band structures of $Cs_2AgBiCl_6$.

FIG. S9: The band structures of $\mathrm{Cs}_2\mathrm{AsTlF}_6.$

FIG. S10: The band structures of $Cs_2GaLaBr_6$.

FIG. S11: The band structures of Cs_2GaLaI_6 .

FIG. S12: The band structures of Cs_2InBiF_6 .

FIG. S13: The band structures of $\rm Cs_2InLaI_6.$

FIG. S14: The band structures of $CsPbF_3$.

FIG. S15: The band structures of Cs_2SbTlF_6 .

FIG. S16: The band structures of Cs_2SnPbF_6 .

FIG. S17: The band structures of Cs_2TlBiF_6 .

FIG. S18: The band structures of Cs_2YInI_6 .

FIG. S19: The band structures of $\rm Rb_2AsTlF_6.$

FIG. S20: The band structures of $Rb_2GaLaBr_6$.

FIG. S21: The band structures of $\mathrm{Rb}_2\mathrm{SbTlF}_6.$

FIG. S22: The band structures of Rb_2TlBiF_6 .

FIG. S23: The band structures of $\rm Rb_2YInBr_6.$