## Supporting Information

## Multifunctional fabrics of carbon nanotube fibers

Xiaogang Luo,<sup>a</sup> Wei Weng,<sup>a</sup> Yunxia Liang,<sup>a</sup> Zexu Hu,<sup>a</sup> Yang Zhang,<sup>a</sup> Junjie Yang,<sup>a</sup> Lijun Yang,<sup>a</sup> Shengyuan Yang,<sup>a</sup> Meifang Zhu\*<sup>a</sup> and Hui-Ming Cheng<sup>bc</sup>

<sup>a</sup> State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
<sup>b</sup> Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.

<sup>c</sup> Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, 1001 Xueyuan Road, Shenzhen 518055, China.

\*To whom correspondence should be addressed to. Email: zmf@dhu.edu.cn.

**Video S1:** CNT cylinder condensing in water and the resultant fiber pulling out of water and winding on a spool

Video S2: Twisting a bundle of CNT fibers into a yarn

Video S3: Automatically knitting a CNT yarn into a fabric



**Figure S1. Characterization of CNT fibers:** (a) TEM image, (b) Raman spectrum, (c) TGA curve, (d) azimuthal scanning profile, and (e) cross section.



Figure S2. SEM images of CNT yarns: (a,b) 5/1000Y and (c,d) 5/3000Y.



**Figure S3. Electrothermal performance of CNTFFs.** Temperature-time curves of CNTFF-10/2000Y (a) and CNTFF-5/2000Y (c) at different voltages, and Infrared images of CNTFF-10/2000Y (b) and CNTFF-5/2000Y (d) at 2 V and 3 V, respectively.



**Figure S4. Electrochemical performance of CNTFF electrodes.** (a) CV curves at scan rates from 5 to 100 mV s<sup>-1</sup>, (b) GCD curves at current densities from 2 to 20 mA cm<sup>-2</sup>, (c) Areal specific capacitance versus different current densities calculated from GCD test, and (d) Cycle stability at the current density of 20 mA cm<sup>-2</sup>.



**Figure S5. Raman spectrum of PPy/CNTFF.** The peaks at 922, 1039, 1246, 1325 and 1579 cm<sup>-1</sup> corresponding to the PPy characteristic peaks of ring deformation, C-H in-plane deformation, C-H in-plane bending, ring stretching and C=C stretching, respectively.



Figure S6. CNT/PET hybrid knitted fabrics: (a) Photograph and (b) SEM image.

| Sample          | Widt | Thickness | Cross-sectional         | Density    | Stress | Strain | Electrical   | Thermal      |
|-----------------|------|-----------|-------------------------|------------|--------|--------|--------------|--------------|
|                 | h    | (cm)      | area (cm <sup>2</sup> ) | $(g/cm^3)$ | (MPa)  | (%)    | conductivity | conductivity |
|                 | (cm) |           |                         |            |        |        | (S/m)        | (W/mK)       |
| CNTFF-5/2000Y   | 1    | 0.020     | 0.020                   | 0.18       | 4.84   | 21     | 25           | 0.04         |
| CNTFF-10/2000Y  | 1    | 0.038     | 0.038                   | 0.26       | 3.90   | 47     | 55           | 0.06         |
| CNTFF-6-5/2000Y | 1    | 0.067     | 0.067                   | 0.36       | 6.85   | 46     | 110          | 0.13         |

Table S1. Mechanical, electrical and thermal properties of CNTFFs.

| Material                                | Driving voltage | Saturated temperature | Response time | Ref.       |
|-----------------------------------------|-----------------|-----------------------|---------------|------------|
|                                         | (V)             | (°C)                  | (s)           |            |
| CNTFFs                                  | 3               | 131                   | 10            | This work  |
| Graphene fiber fabric                   | 10              | 382                   | 0.7           |            |
| Carbon fiber paper                      | 10              | 147                   | 8             | 1          |
| Graphite paper                          | 10              | 99                    | 42            |            |
| Graphene paper                          | 3.2             | 42                    | 10            | 2          |
| Graphene/glass                          | 24              | 80                    | ~300          | 3          |
| AuCl <sub>3</sub> -doped graphene/glass | 10              | 80                    | ~300          | 5          |
| Graphene-AuCl <sub>3</sub> /PET         | 12              | 100                   | ~100          | 4          |
| Graphene-HNO <sub>3</sub> /PET          | 12              | 65                    | ~100          | 4          |
| RGO film/PI                             | 29              | 177                   | 120           | 5          |
| RGO/quartz                              | 60              | 206                   | ~120          | 6          |
| RGO/PI                                  | 60              | 72                    | ~10           | 0          |
| RGO/PET fabric                          | 6               | 50                    | 3             | 7          |
| SWCNT/PET                               | 12              | 80                    | 50            | 8          |
| CNT/cotton cloth                        | 12              | 38                    | ~300          | 9          |
| Ag NW/PDMS                              | 5               | 80                    | ~50           | 10         |
| Ag mesh/glass                           | 9               | 128                   | ~300          | 11         |
| Ag NW/cotton cloth                      | 0.9             | 38                    | ~300          | 9          |
| PEDOT/cotton textile                    | 7               | 83.9                  | ~70           | 12         |
| PPy/cotton textile                      | 9               | 83                    | 100           | 13         |
| PTC heating plate                       | 12              | 60-220                | NA            | Commercial |
| MCH heating plate                       | 10              | 130-340               | >10           | Commercial |

## **Table S2.** Comparison of the Joule heating performance of the CNTFFs with previously reported film heaters and commercial heating elements.

The response time is denoted as the time required to reach the saturated temperature;

PET: polyethylene-terephthalate; RGO: reduced graphene oxide; PI-polyimide; PDMS: polydimethylsiloxane; NW: nanowire; PEDOT: poly(3,4-ethylenedioxythiophene); PPy: polypyrrole; PTC: positive temperature coefficient; MCH: metal ceramic heater;

| Electrode materials                                            | Mass loading<br>(mg cm <sup>-2</sup> ) | Test condition           | Areal capacitance<br>(mF cm <sup>-2</sup> ) | Ref.      |
|----------------------------------------------------------------|----------------------------------------|--------------------------|---------------------------------------------|-----------|
| PPy/CNTFF                                                      | 6.88                                   | 5 mA cm <sup>-2</sup>    | 4734                                        | This work |
| SiC/carbon fabric                                              | NA                                     | 50 mV s <sup>-1</sup>    | 23                                          | 14        |
| PANI/carbon cloth                                              | NA                                     | 2 mA cm <sup>-2</sup>    | 787.4                                       | 15        |
| MnO <sub>2</sub> /carbon cloth                                 | NA                                     | 0.13 mA cm <sup>-2</sup> | 230                                         | 16        |
| Ni(OH) <sub>2</sub> /carbon cloth                              | NA                                     | 2 A g <sup>-1</sup>      | 1136                                        | 17        |
| Fe <sub>2</sub> O <sub>3</sub> /carbon cloth                   | 4.3                                    | 0.5 mA cm <sup>-2</sup>  | 382.7                                       | 18        |
| MoO <sub>3-x</sub> /carbon fabric                              | 3.0                                    | 2 mA cm <sup>-2</sup>    | 500                                         | 19        |
| Co <sub>9</sub> S <sub>8</sub> /carbon cloth                   | NA                                     | 5 mV s <sup>-1</sup>     | 2350                                        | 20        |
| Co <sub>3</sub> O <sub>4</sub> @RuO <sub>2</sub> /carbon cloth | 2.0                                    | 1 mV s <sup>-1</sup>     | 1180                                        | 20        |
| RGO/carbon cloth                                               | 1.4                                    | 1 mA cm <sup>-2</sup>    | 264                                         | 01        |
| MnO <sub>2</sub> /carbon cloth                                 | 2.0                                    | 1 mA cm <sup>-2</sup>    | 331                                         | 21        |
| RGO/stainless steel fabric                                     | 4.4-5.6                                | 2 mA cm <sup>-2</sup>    | $730.8 \pm 8.7$                             | 22        |
| MWCNT/RGO/Ni-coated cotton fabric                              | 23.7                                   | 20 mA cm <sup>-2</sup>   | 6200                                        | 23        |
| PPy/RGO/PET textile                                            | 3.39                                   | 1 mA cm <sup>-2</sup>    | 1117                                        | 24        |
| PPy/cotton fabric                                              | 12.3                                   | 5 mA cm <sup>-2</sup>    | 3553                                        | 25        |
| WO <sub>3</sub> /graphene/PET textile                          | NA                                     | 1 mV s <sup>-1</sup>     | 308.2                                       | 26        |
| PANI/CNT/PET fabric                                            | NA                                     | 1 mA cm <sup>-2</sup>    | 386                                         | 27        |

**Table S3.** Comparison of the areal capacitance of the PPy/CNTFF electrode with previously reported fabric electrodes.

PANI: polyaniline; RGO: reduced graphene oxide; PPy: polypyrrole; PET: polyethylene-terephthalate;

## References

- 1. Z. Li, Z. Xu, Y. Liu, R. Wang and C. Gao, *Nat. Commun.*, 2016, 7, 13684.
- Y. Guo, C. Dun, J. Xu, J. Mu, P. Li, L. Gu, C. Hou, C. A. Hewitt, Q. Zhang and Y. Li, Small, 2017, 13, 1702645.
- J. J. Bae, S. C. Lim, G. H. Han, Y. W. Jo, D. L. Doung, E. S. Kim, S. J. Chae, T. Q. Huy, N. V. Luan and Y. H. Lee, *Adv. Funct. Mater.*, 2012, 22, 4819-4826.
- J. Kang, H. Kim, K. S. Kim, S. K. Lee, S. Bae, J. H. Ahn, Y. J. Kim, J. B. Choi and B. H. Hong, *Nano Lett.*, 2011, 11, 5154-5158.
- 5. Z. Liu, Z. Li, Z. Xu, Z. Xia, X. Hu, L. Kou, L. Peng, Y. Wei and C. Gao, *Chem. Mater.*, 2014, **26**, 6786-6795.
- 6. D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma and Y. Chen, *Small*, 2011, 7, 3186-3192.
- 7. D. Wang, D. Li, M. Zhao, Y. Xu and Q. Wei, *Appl. Surf. Sci.*, 2018, **454**, 218-226.
- Y. H. Yoon, J. W. Song, D. Kim, J. Kim, J. K. Park, S. K. Oh and C. S. Han, *Adv. Mater.*, 2010, 19, 4284-4287.
- P. C. Hsu, X. Liu, C. Liu, X. Xie, H. R. Lee, A. J. Welch, T. Zhao and Y. Cui, *Nano Lett.*, 2015, 15, 365-371.
- S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo and S. H. Ko, *Adv. Mater.*, 2015, 27, 4744-4751.
- 11. S. Kiruthika, R. Gupta and G. Kulkarni, RSC Adv., 2014, 4, 49745-49751.
- I. K. Moon, S. Yoon, H. U. Lee, S. W. Kim and J. Oh, ACS Appl. Mater. Interfaces, 2017, 9, 40580-40592.
- 13. D. Hao, B. Xu and Z. Cai, J. Mater. Sci., 2018, 29, 9218-9226.
- 14. G. Lin, Y. Wang, Y. Fang, L. Ren and S. Jian, J. Power Sources, 2013, 243, 648-653.
- T. Liu, L. Finn, M. Yu, H. Wang, T. Zhai, X. Lu, Y. Tong and Y. Li, *Nano Lett.*, 2014, 14, 2522-2527.
- Y. C. Chen, Y. K. Hsu, Y. G. Lin, Y. K. Lin, Y. Y. Horng, L. C. Chen and K. H. Chen, *Electrochim. Acta*, 2011, 56, 7124-7130.
- 17. D. Ghosh, M. Mandal and C. K. Das, *Langmuir*, 2015, **31**, 7835.
- X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M. S. Balogun and Y. Tong, *Adv. Mater.*, 2014, 26, 3148-3155.
- X. Xiao, T. Ding, L. Yuan, Y. Shen, Q. Zhong, X. Zhang, Y. Cao, B. Hu, T. Zhai and L. Gong, *Adv. Energy Mater.*, 2012, 2, 1328-1332.
- 20. J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, *ACS Nano*, 2013, 7, 5453-5462.
- H. Jeon, J. M. Jeong, S. B. Hong, M. Yang, J. Park, D. H. Kim, S. Y. Hwang and B. G. Choi, *Electrochim. Acta*, 2018, 280, 9-16.
- 22. J. Yu, J. Wu, H. Wang, A. Zhou, C. Huang, H. Bai and L. Li, *ACS Appl. Mater. Interfaces*, 2016, **8**, 4724-4729.
- Y. Yang, Q. Huang, L. Niu, D. Wang, C. Yan, Y. She and Z. Zheng, *Adv. Mater.*, 2017, 29, 1606679.
- X. Li, R. Liu, C. Xu, Y. Bai, X. Zhou, Y. Wang and G. Yuan, *Adv. Funct. Mater.*, 2018, 28, 1800064.
- 25. L. Liu, W. Weng, J. Zhang, X. Cheng, N. Liu, J. Yang and X. Ding, *J. Mater. Chem. A*, 2016, **4**, 12981.

- 26. L. N. Jin, P. Liu, C. Jin, J. N. Zhang and S. W. Bian, *J. Colloid Interface Sci.*, 2018, **510**, 1-11.
- 27. F. C. R. Ramirez, P. Ramakrishnan, Z. P. Flores-Payag, S. Shanmugam and C. A. Binag, *Synthetic Met.*, 2017, **230**, 65-72.