Supporting Information

Structural Prediction and Multilayer Li⁺ Storage in Two Dimensional VC₂ Carbide Studied by First-Principles Calculations

Jing Xu^{a,b}, Dashuai Wang^{a,*}, Ruqian Lian^a, Xinying Gao^a, Yanhui Liu^b, Gogotsi Yury^{a,c}, Gang Chen^a, Yingjin Wei ^{a,*}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
^bDepartment of Physics, Science of Technology, Yanbian University, Yanji 133000, China.

^cDepartment of Materials Science & Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, United States.

*Corresponding author: yjwei@jlu.edu.cn (Y.J. Wei), 745752245@qq.com (D.S. Wang), Tel & Fax: 86-431-85155126

	VC ₂ -α	VC ₂ -β	VC ₂ -T	S-VC ₂
a (Å)	2.6945	3.2769	2.9646	3.2855
b (Å)	4.2735	4.6232	2.9646	4.6349
c (Å)	22.5267	22.1872	22.0696	11.0738
$\alpha = \beta = \gamma$	90°	90°	α = β =90°, γ=120°	90°
V-C (Å)	2.0558/2.1241	1.9266/2.1245	2.0001	1.9305/2.1274
C-C (Å)	1.3409	1.3478	-	1.347

Table S1 Structure parameters of the predicted VC_2 monolayers and stacked multilayer.

Table S2 Adsorption energy (E_{ad}) and transferred charges (Δe) per Li atom at different sites with a 3 × 3 × 1 VC₂ supercell.

sito	$V_{18}C_{36}Li-\alpha$		$V_{18}C_{36}Li-\beta$	
Site	E _{ad} (eV)	Δe-Li	E _{ad} (eV)	Δe-Li
1	-1.2809	-0.9087	-1.8775	-0.9392
2	-1.9523	-0.9168	-1.2208	-0.9147
3	-1.194	-0.9108	-1.7491	-0.9277
4	-1.4245	-0.9092	-1.6274	-0.9368

Fig. S1 Bond angles of C-V-C for (a) VC₂- α and (b) VC₂- β configurations.

Fig. S2 Phonon spectra of (a) $VC_2-\alpha$, (b) $VC_2-\beta$ and (c) VC_2 -T. AIMD simulated VC_2 monolayers at 300, 500, 800 and 1000K, (d)-(g) for $VC_2-\alpha$, (h) for VC_2 -T, and (i)-(I) for $VC_2-\beta$, respectively.

Fig. S3 (a) phonon spectra, (b) AIMD simulated structures at 300, 500, 800 and 1000K and (c) DOS of S-VC₂, respectively.