Supporting Information

Two-dimensional Ti₂CT_x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration

Guozhen Liu,^a Jie Shen,^a Yufan Ji,^a Quan Liu,^a Gongping Liu,^{a*} Jian Yang^b and Wanqin Jin^{a*}

a State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, 5 Xinmofan Road, Nanjing 210009, P.R. China.

b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China

*Corresponding author: wqjin@njtech.edu.cn; gpliu@njtech.edu.cn

Legend of Figures

Fig. S1 Schematic illustration of the assumption transformations on surface and cross-section of membrane

Fig. S2 The structure of HPEI molecule

Fig. S3 XRD patterns of (a) Ti_2AlC and Ti_2CT_x powders; (b) Ti_3AlC_2 and $Ti_3C_2T_x$ powders

Fig. S4 Digital photo images of (a) Freestanding MXene $(Ti_3C_2T_x)$ membrane, (b) and

(c) the MXene $(Ti_3C_2T_x)$ membrane could be folded into different shapes by glass rod and tweezers, showing good flexibility

Fig. S5 SEM images of PAN substrate

Fig. S6 Digital photos of (a) DI water, (b) MXene-HPEI mixture (0.150mg/mL), (c) MXene-HPEI mixture after stirring for 20 min (0.150mg/mL)

Fig. S7 SEM images of cross-section on (a) Ti_2CT_x membrane, (b) Ti_2CT_x -HPEI membrane, (c) Ti_2CT_x -HPEI/TMC membrane, corresponding to Fig. 3 (a)-(c)

Fig. S8 XPS spectra of Ti₂CT_x-HPEI/TMC membrane

Fig. S9 SEM (a) and AFM (b) images HPEI/TMC membrane

Fig. S10 SEM images of $Ti_3C_2T_x$ -HPEI/TMC membrane, (a) surface and (b) cross-section, (MXene deposition 72.21 mg/m²)

Fig. S11 AFM images of Ti_2CT_x -HPEI/TMC membrane with different MXene deposition (a) 54.16 mg/m², (b) 72.21 mg/m², (c) 144.43 mg/m², (d) 216.65 mg/m², (e) 361.08 mg/m², (f)-(j) corresponding 3D images

Fig. S12 AFM images of $Ti_3C_2T_x$ -HPEI/TMC membrane with different MXene deposition (a) 54.16 mg/m², (b) 72.21 mg/m², (c) 144.43 mg/m², (d) 216.65 mg/m², (e) 361.08 mg/m², (f)-(j) corresponding 3D images

Fig. S13 Performance on isopropanol dehydration by pervaporation of $Ti_3C_2T_x$ -based membranes (feed: 10 wt% water/isopropanol mixture, 50 °C, MXene deposition 72.21 mg/m²)

Fig. S14 Effect of MXene loading on $Ti_3C_2T_x$ -HPEI/TMC membrane and Ti_2CT_x -HPEI/TMC membrane for isopropanol dehydration by pervaporation at 50 °C (feed: 10 wt% water/isopropanol mixture)

Fig. S15 Effect of (a and b) temperature on isopropanol dehydration by pervaporation for Ti_2CT_x -HPEI/TMC membrane at 50 °C, (b) the Arrhenius graph equation between water and isopropanol permeance and feed temperature(feed: 10 wt% water/isopropanol mixture, MXene loading 72.21 mg/m²)

Fig. S16 Effect of feed concentration on isopropanol dehydration by pervaporation for Ti_2CT_x -HPEI/TMC membrane at 50 °C, (MXene loading 72.21 mg/m²)

Fig. S17 XRD patterns of nylon-supported Ti_2CT_x -HPEI/TMC membrane before and after immersing into 10 wt% water/isopropanol mixture for 120 h

(a) Surface

Fig. S1 Schematic illustration of the assumption transformations on surface and cross-section of membrane

Fig. S2 The structure of HPEI molecule

Fig. S3 XRD patterns of (a) Ti_2AlC and Ti_2CT_x powders; (b) Ti_3AlC_2 and $Ti_3C_2T_x$ powders

Fig. S4 Digital photo images of (a) Freestanding MXene $(Ti_3C_2T_x)$ membrane, (b) and (c) the MXene $(Ti_3C_2T_x)$ membrane could be folded into different shapes by glass rod and tweezers, showing good flexibility.

Fig. S5 SEM images of PAN substrate

Fig. S6 Digital photos of (a) DI water, (b) MXene-HPEI mixture (0.150mg/mL), (c) MXene-HPEI mixture after stirring for 20 min (0.150 mg/mL).

Fig. S7 SEM images of cross-section on (a) Ti_2CT_x membrane, (b) Ti_2CT_x -HPEI membrane, (c) Ti_2CT_x -HPEI/TMC membrane, corresponding to Fig. 3 (a)-(c).

Fig. S8 XPS spectra of Ti_2CT_x -HPEI/TMC membrane

Fig. S9 SEM (a) and AFM (b) images HPEI/TMC membrane.

Fig. S10 SEM images of $Ti_3C_2T_x$ -HPEI/TMC membrane, (a) surface and (b) cross-section, (MXene deposition 72.21 mg/m²)

Fig. S11 AFM images of Ti_2CT_x -HPEI/TMC membrane with different MXene deposition (a) 54.16 mg/m², (b) 72.21 mg/m², (c) 144.43 mg/m², (d) 216.65 mg/m², (e) 361.08 mg/m², (f)-(j) corresponding 3D images.

Fig. S12 AFM images of $Ti_3C_2T_x$ -HPEI/TMC membrane with different MXene deposition (a) 54.16 mg/m², (b) 72.21 mg/m², (c) 144.43 mg/m², (d) 216.65 mg/m², (e) 361.08 mg/m², (f)-(j) corresponding 3D images.

Fig. S13 Performance on isopropanol dehydration by pervaporation of $Ti_3C_2T_x$ -based membranes (feed: 10 wt% water/isopropanol mixture, 50 °C, MXene deposition 72.21 mg/m²)

Fig. S14 Effect of MXene loading on $Ti_3C_2T_x$ -HPEI/TMC membrane and Ti_2CT_x -HPEI/TMC membrane for isopropanol dehydration by pervaporation at 50 °C (feed: 10 wt% water/isopropanol mixture).

Fig. S15 Effect of (a and b) temperature on isopropanol dehydration by pervaporation for Ti_2CT_x -HPEI/TMC membrane at 50 °C, (b) the Arrhenius graph equation between water and isopropanol permeability and feed temperature(feed: 10 wt% water/isopropanol mixture, MXene loading 72.21 mg/m²)

For the sake of understanding the relationship between flux and temperature, we used Arrhenius equation to reveal it.

$$P_{i} = \frac{J_{i}}{p_{i0} - p_{il}} = \frac{J_{i}}{\gamma_{i0} x_{i0} p_{i0}^{sat} - p_{il}}$$

(1)

$$Pi = Aexp(-\frac{Ea}{RT})$$

(2)

Where *Pi* represents the permeance of individual component *i* (GPU), *J_i* is the permeation flux of component *i* (g m⁻² h⁻¹), p_{i0} and p_{il} are the partial pressure of component *i* in the feed side and permeate side (Pa), γ_{i0} is the activity coefficient of component *i* in the feed side. x_{i0} is the mole fraction of component *i* in the feed side. p_{i0}^{sat} is the saturated vapor pressure of pure component *i*. *A* is the preexponential factor (g m⁻² h⁻¹), *Ea* stands for the activation energy (kJ mol⁻¹), *R* belongs to the gas constant (kJ mol⁻¹ K⁻¹) and T refers to the feed temperature (K).

From Fig. S12a, the activation energy of water and isopropanol were calculated as -19.82 and 8.67 kJ/mol, respectively.

Fig. S16 Effect of feed concentration on isopropanol dehydration by pervaporation for Ti_2CT_x -HPEI/TMC membrane at 50 °C, (MXene loading 72.21 mg/m²).

Fig. S17 XRD patterns of nylon-supported Ti_2CT_x -HPEI/TMC membrane before and after immersing into 10 wt% water/isopropanol mixture for 120 h