Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

High Ion Mobility and Capacity of Monolayer GaS as a Promising Anode Battery Material

Xiuying Zhang¹, Chen Yang^{1,2}, Yuanyuan Pan¹, Mouyi Weng³, Linqiang Xu¹, Shiqi Liu¹, Jie Yang¹, Jiahuan Yan¹, Jingzhen Li¹, Bowen Shi¹, Jinbo Yang^{1, 4, 5}, Jiaxin Zheng^{3*}, Feng Pan^{3*}, Jing Lu^{1, 4, 5*}

¹State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China

²Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China

³School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. China

⁴Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China

⁵Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, P. R. China

518055, P. R. China

Corresponding author: jinglu@pku.edu.cn, panfeng@pkusz.edu.cn, zhengjx@pkusz.edu.cn

Figure S1: Top and side view of atomic structure of $M_{0.031}GaS$ (a), $M_{0.056}GaS$ (b), $M_{0.125}GaS$ (c), and $M_{0.5}GaS$ (d) (M = Li, Na, K, Al).

Figure S2: Top and side view of atomic structure of Li_1GaS (a), $Li1_{1.5}GaS$ (b), Li_2GaS (c), and $Li_{2.5}GaS$ (d).

Figure S3: ELF map of the (100) face of ML Li₂GaS (a), Li_{2.5}GaS (b).

Figure S4: ELF map of the (100) face of ML Na_{0.125}GaS (a), Na_{0.5}GaS (b).

Figure S5: ELF map of the (100) face of ML $K_{0.125}$ GaS (a), $K_{0.5}$ GaS (b) and K_1 GaS (c).

Figure S6: ELF map of the (100) face of ML $Al_{0.125}GaS$ (a), $Al_{0.5}GaS$ (b).